首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   20篇
  国内免费   12篇
测绘学   2篇
大气科学   57篇
地球物理   160篇
地质学   152篇
海洋学   86篇
天文学   26篇
综合类   6篇
自然地理   15篇
  2022年   3篇
  2021年   8篇
  2020年   9篇
  2019年   8篇
  2018年   16篇
  2017年   24篇
  2016年   18篇
  2015年   14篇
  2014年   24篇
  2013年   35篇
  2012年   22篇
  2011年   29篇
  2010年   24篇
  2009年   27篇
  2008年   27篇
  2007年   18篇
  2006年   16篇
  2005年   19篇
  2004年   13篇
  2003年   16篇
  2002年   12篇
  2001年   11篇
  2000年   13篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   3篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1984年   2篇
  1983年   8篇
  1982年   4篇
  1981年   3篇
  1980年   10篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   1篇
  1974年   5篇
  1973年   7篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有504条查询结果,搜索用时 15 毫秒
1.
2.
The ordinary kriging method, a geostatistical interpolation technique, was applied for developing contour maps of design storm depth in northern Taiwan using intensity–duration–frequency (IDF) data. Results of variogram modelling on design storm depths indicate that the design storms can be categorized into two distinct storm types: (i) storms of short duration and high spatial variation and (ii) storms of long duration and less spatial variation. For storms of the first category, the influence range of rainfall depth decreases when the recurrence interval increases, owing to the increasing degree of their spatial independence. However, for storms of the second category, the influence range of rainfall depth does not change significantly and has an average of approximately 72 km. For very extreme events, such as events of short duration and long recurrence interval, we do not recommend usage of the established design storm contours, because most of the interstation distances exceed the influence ranges. Our study concludes that the influence range of the design storm depth is dependent on the design duration and recurrence interval and is a key factor in developing design storm contours. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
In experiments at the high-power Z-facility at Sandia National Laboratory in Albuquerque, New Mexico, we have been able to produce a low density photoionized laboratory plasma of Fe mixed with NaF. The conditions in the experiment allow a meaningful comparison with X-ray emission from astrophysical sources. The charge state distributions of Fe, Na and F are determined in this plasma using high resolution X-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter ξ = 20–25 erg cm s−1 under nearly steady-state conditions. First comparisons of the measured charge state distributions with X-ray photoionization models show reasonable agreement, although many questions remain.  相似文献   
4.
An integrated GIS-based tool (GTIS) was constructed to estimate site effects related to the earthquake hazards in the Gyeongju area of Korea. To build the GTIS for the study area, intensive site investigations and geotechnical data collections were performed and a walk-over site survey was additionally carried out to acquire surface geo-knowledge data in accordance with the procedure developed to build the GTIS. For practical applications of the GTIS used to estimate the site effects associated with the amplification of ground motion, seismic microzoning maps of the characteristic site period and the mean shear wave velocity to a depth of 30 m were created and presented as a regional synthetic strategy addressing earthquake-induced hazards. Additionally, based on one-dimensional site response analyses, various seismic microzoning maps for short- and mid-period amplification potentials were created for the study area. Case studies of seismic microzonations in the Gyeongju area verified the usefulness of the GTIS for predicting seismic hazards in the region.  相似文献   
5.
A nutrient dynamic model coupled with a 3D physical model has been developed to study the annual cycle of phytoplankton production in the Yellow Sea. The biological model involves interactions between inorganic nitrogen (nitrate and ammonium), phosphate and phytoplankton biomass. The model successfully reproduces the main features of phytoplankton-nutrient variation and dynamics of production. 1. The well-mixed coastal water is characterized by high primary production, as well as high new production. 2. In summer, the convergence of tidal front is an important hydrodynamic process, which contributes to high biomass at frontal areas. 3. The evolution of phytoplankton blooms and thermocline in the central region demonstrate that mixing is a dominant factor to the production in the Yellow Sea. In this simulation, nitrate- and ammonium-based productions are estimated regionally and temporally. The northern Yellow Sea is one of the highly ranked regions in the Yellow Sea for the capability of fixing carbon and nitrogen. The annual averaged f-ratio of 0.37 indicates that regenerated production prevails over the Yellow Sea. The result also shows that phosphate is the major nutrient, limiting phytoplankton growth throughout the year and it can be an indicator to predict the bloom magnitude. Finally, the relative roles of external nutrient sources have been evaluated, and benthic fluxes might play a significant role in compensating 54.6% of new nitrogen for new production consumption.  相似文献   
6.
The south-flowing waters of the Kamchatka and Oyashio Currents and west-flowing waters of the Alaskan Stream are key components of the western sub-Arctic Pacific circulation. We use CTD data, Argo buoys, WOCE surface drifters, and satellite-derived sea-level observations to investigate the structure and interannual changes in this system that arise from interactions among anticyclonic eddies and the mean flow. Variability in the temperature of the upstream Oyashio and Kamchatka Currents is evident by warming in mesothermal layer in 1994–2005 compared to 1990–1991. A major fraction of the water in these currents is derived directly from the Alaskan Stream. The stream also sheds large anticyclonic (Aleutian) eddies, averaging approximately 300 km in diameter with a volume transport significant in comparison with that of the Kamchatka Current itself. These eddies enclose pools of relatively warm and saline water whose temperature is typically 4 °C warmer and salinity is 0.4 greater than that of cold-core Kamchatka eddies in the same density range. Aleutian eddies drift at approximately 1.2 km d−1 and retain their distinctive warm and salty characteristics for at least 2 years. Selected westward pathways during 1990–2004 are identified. If the shorter northern route is followed, Aleutian eddies remain close to the stream and persist sufficiently long to carry warm and saline water directly to the Kamchatka Current. This was observed during 1994–1997 with substantial warming of the waters in the Kamchatka Current and upstream Oyashio. If the eddies take a more southern route they detach from the stream but can still contribute significant quantities of warm and saline water to the upstream Oyashio, as in 2004–2005. However, the eddies following this southern route may dissipate before reaching the western boundary current region.  相似文献   
7.
Large scale reclamation works in coastal areas of the Nakdong River plain are at various stages of progress, since early 1990's on in-situ soft marine clay deposits. These deposits are of the order of 30 to 40 m thick. A realistic rapid characterization of soft ground would ensure success of any reclamation work in this area. In order to cope with the work carried out with different agencies, it is desirable to evolve a systematic methodology. In this study, engineering properties of clays at three coastal areas, Gadukdo, Noksan and Shinho, have been generated. The analysis of data has been done within the framework of classical developments in soil mechanics. Analysis has also been made by making use of the recent developments in dealing with soft clays. The dominant factors, namely, stress, time, and environment influencing the response of clay to loading are identified.  相似文献   
8.
The lateral deflection of a cylindrical diaphragm wall and the associated ground movement induced by deep excavation are analyzed by performing site instrumentations and numerical analyses in the coastal area of Korea. Wall lateral deflection, rebar stress, and pore water pressure were measured and analyzed in eight directions. Variations of soil properties with the decrease of confining pressure are compared by performing various in situ tests before ad after excavation. To calculate the wall lateral deflection accurately, the effects of small strain nonlinearity, confining pressure, and the hysteresis loading/unloading loop developed during excavation are considered in the proposed numerical analysis. By comparing numerical results with measured ones, the importances of considering small strain nonlinearity and confining pressure reduction in the nonlinear (FEM) are emphasized. Also, the effects of wall stiffness on the performance of cylindrical diaphragm walls are studied for future similar excavation in the coastal area.  相似文献   
9.
Multivariate statistical analyses have been extensively applied to geochemical measurements to analyze and aid interpretation of the data. Estimation of the covariance matrix of multivariate observations is the first task in multivariate analysis. However, geochemical data for the rare elements, especially Ag, Au, and platinum-group elements, usually contain observations the below detection limits. In particular, Instrumental Neutron Activation Analysis (INAA) for the rare elements produces multilevel and possibly extremely high detection limits depending on the sample weight. Traditionally, in applying multivariate analysis to such incomplete data, the observations below detection limits are first substituted, for example, each observation below the detection limit is replaced by a certain percentage of that limit, and then the standard statistical computer packages or techniques are used to obtain the analysis of the data. If a number of samples with observations below detection limits is small, or the detection limits are relatively near zero, the results may be reasonable and most geological interpretations or conclusions are probably valid. In this paper, a new method is proposed to estimate the covariance matrix from a dataset containing observations below multilevel detection limits by using the marginal maximum likelihood estimation (MMLE) method. For each pair of variables, sayY andZ whose observations containing below detection limits, the proposed method consists of three steps: (i) for each variable separately obtaining the marginal MLE for the means and the variances, , , , and forY andZ: (ii) defining new variables by and and lettingA=C+D andB=CD, and obtaining MLE for variances, and forA andB; (iii) estimating the correlation coefficient YZ by and the covariance YZ by . The procedure is illustrated by using a precious metal geochemical data set from the Fox River Sill, Manitoba, Canada.  相似文献   
10.
Mössbauer spectra (MS) of blue, green and yellow beryl (ideally Be3Al2Si6O18) containing approximately 1% of iron were obtained at 295 and 500 K. Room temperature (RT) spectra of both blue and green samples showed the presence of an asymmetric Fe2+ doublet (ΔE Q~2.7 mm/s, δ~1.1 mm/s), with a very broad low-velocity peak. There is no clear evidence for the presence of a ferric component. The MS of the yellow sample at RT consists of an intense central absorption with parameters typical for Fe3+E Q~0.4 mm/s, δ~0.29 mm/s), plus an apparently symmetrical Fe2+ doublet. This sample acquires a light-blue shade upon heating in air at about 620 K. Thermal treatments at high temperatures caused no significant changes in the MS, but the green and yellow beryl acquire a blue colour. All these results are interpreted in relation to the existence of channel water and the distribution of iron among the available crystallographic sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号