首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   780篇
  免费   20篇
  国内免费   5篇
测绘学   12篇
大气科学   80篇
地球物理   162篇
地质学   326篇
海洋学   48篇
天文学   139篇
综合类   4篇
自然地理   34篇
  2021年   7篇
  2020年   7篇
  2019年   9篇
  2018年   16篇
  2017年   14篇
  2016年   19篇
  2015年   13篇
  2014年   19篇
  2013年   38篇
  2012年   14篇
  2011年   38篇
  2010年   28篇
  2009年   52篇
  2008年   25篇
  2007年   35篇
  2006年   30篇
  2005年   30篇
  2004年   25篇
  2003年   23篇
  2002年   15篇
  2001年   9篇
  2000年   17篇
  1999年   10篇
  1998年   6篇
  1997年   13篇
  1996年   9篇
  1995年   7篇
  1994年   11篇
  1993年   9篇
  1992年   6篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1984年   12篇
  1982年   17篇
  1981年   10篇
  1980年   13篇
  1978年   7篇
  1977年   11篇
  1976年   10篇
  1975年   8篇
  1974年   10篇
  1973年   12篇
  1972年   5篇
  1971年   9篇
  1970年   5篇
  1968年   6篇
  1967年   7篇
  1959年   7篇
  1954年   5篇
排序方式: 共有805条查询结果,搜索用时 15 毫秒
1.
2.
The Northland region of New Zealand includes numerous high-value, macrophyte-dominated dune lakes. Recent water policy reforms offer limited guidance on managing for aquatic macrophytes. In addition, dune lake histories are poorly known as regular monitoring dates to 2005 AD. Here, ca. 4000 years of lake functional behaviour is reconstructed from sedimentary archives in two Northland dune lakes (Humuhumu and Rotokawau). Results demonstrated that macrophyte dominance is sensitive to catchment erosion and hydrological drawdown. Degradation of macrophyte communities occurred in the nineteenth and twentieth centuries, earlier at Lake Humuhumu than Lake Rotokawau (post-1880 AD and post-1930 AD, respectively). In both lakes, increased erosional influx reduced macrophyte productivity, before later increases to wider trophic state (post-1970 AD). Lake-level decline is linked to increased nutrient loading at Lake Rotokawau but less so, Lake Humuhumu which is more strongly groundwater-fed. In Northland dune lakes, water-level reduction and erosional influx from land use have driven macrophyte degradation.  相似文献   
3.
Researchers have associated channel-forming flows with reach-average shear stresses close to the entrainment threshold for the surface D50 . We conducted experiments using a model of a generic steep, gravel–cobble stream to test this association. Our results suggest that channel-forming flows fully mobilize the D50 , and produce shear stresses close to the entrainment threshold for the largest grains in the bed. The channel dimensions were set by flows capable of mobilizing between 85% and 90% of the bed surface, which produced a brief period of lateral instability lasting about 1 h, followed by a prolonged period of relative stability during which modest adjustments occurred, but during which the reach-average hydraulics remained about the same. The adjustments during the unstable phase of the experiments are characterized by rapid bank erosion, extensive deposits on the channel bed and a restructuring of the major morphologic elements of the stream. The adjustments during the stable phase of the experiments involved barform migration and bed surface coarsening but did not appreciably modify the physical template established by the end of the unstable phase. The behaviour we observed is not consistent with the concept of a dynamic equilibrium associated with a formative flow that is just capable of entraining the bed surface D50 . Instead, it suggests that rapid adjustments occur once a stability threshold is exceeded, which creates a template that constrains channel activity until another event drives the system across the stability threshold, and re-sets the template. While we believe that it is probably too simplistic to associate a channel-forming discharge with the entrainment threshold for a single grain size, our results suggest that the D95 is a more logical choice than the D50 © 2020 John Wiley & Sons, Ltd.  相似文献   
4.

Background

The credibility and effectiveness of country climate targets under the Paris Agreement requires that, in all greenhouse gas (GHG) sectors, the accounted mitigation outcomes reflect genuine deviations from the type and magnitude of activities generating emissions in the base year or baseline. This is challenging for the forestry sector, as the future net emissions can change irrespective of actual management activities, because of age-related stand dynamics resulting from past management and natural disturbances. The solution implemented under the Kyoto Protocol (2013–2020) was accounting mitigation as deviation from a projected (forward-looking) “forest reference level”, which considered the age-related dynamics but also allowed including the assumed future implementation of approved policies. This caused controversies, as unverifiable counterfactual scenarios with inflated future harvest could lead to credits where no change in management has actually occurred, or conversely, failing to reflect in the accounts a policy-driven increase in net emissions. Instead, here we describe an approach to set reference levels based on the projected continuation of documented historical forest management practice, i.e. reflecting age-related dynamics but not the future impact of policies. We illustrate a possible method to implement this approach at the level of the European Union (EU) using the Carbon Budget Model.

Results

Using EU country data, we show that forest sinks between 2013 and 2016 were greater than that assumed in the 2013–2020 EU reference level under the Kyoto Protocol, which would lead to credits of 110–120 Mt CO2/year (capped at 70–80 Mt CO2/year, equivalent to 1.3% of 1990 EU total emissions). By modelling the continuation of management practice documented historically (2000–2009), we show that these credits are mostly due to the inclusion in the reference levels of policy-assumed harvest increases that never materialized. With our proposed approach, harvest is expected to increase (12% in 2030 at EU-level, relative to 2000–2009), but more slowly than in current forest reference levels, and only because of age-related dynamics, i.e. increased growing stocks in maturing forests.

Conclusions

Our science-based approach, compatible with the EU post-2020 climate legislation, helps to ensure that only genuine deviations from the continuation of historically documented forest management practices are accounted toward climate targets, therefore enhancing the consistency and comparability across GHG sectors. It provides flexibility for countries to increase harvest in future reference levels when justified by age-related dynamics. It offers a policy-neutral solution to the polarized debate on forest accounting (especially on bioenergy) and supports the credibility of forest sector mitigation under the Paris Agreement.
  相似文献   
5.
The paper presents data on plutonic and metamorphic rocks dredged during Cruise 249 of the German R/V Sonne to the Stalemate Ridge, Northwest Pacific Ocean and the Shirshov Rise, western Bering Sea. Dredges in the northwestern sector of the Stalemate Ridge and central portion of the Shirshov Rise show that the plutonic and metamorphic rocks obtained here are amazingly similar. Our petrologic and geochemical data led us to view the rocks as members of a mafic–ultramafic assemblage typical of cumulate portions of ophiolite complexes and backarc spreading centers. The plutonic complexes of the Shirshov Rise and Stalemate Ridge show similarities not only in the petrography and mineralogy of their protoliths but also in the character of their metamorphic transformations. Plutonic rocks from both areas display mineralogical evidence of metamorphism within a broad temperature range: from the high-temperature amphibolite facies to the greenschist facies. Relations between the index mineral assemblages indicate that the metamorphic history of plutonic complexes in the Stalemate Ridge and Shirshov Rise proceeded along a retrograde path. Hornblende schists accompanying the plutonic rocks of the Stalemate Ridge and Shirshov Rise are petrographically close to foliated amphibolites in subophiolitic metamorphic aureoles. Within the framework of geodynamic interpretations of our results, it is realistic to suggest that the examined plutonic complexes were exhumed from subduction zones of various age.  相似文献   
6.
Rasanen  Ryan A.  Maurer  Brett W. 《Landslides》2022,19(2):407-419
Landslides - In regions of infrequent but potentially damaging seismicity, modern earthquake inventories may be insufficient to provide inputs to seismic hazard analyses (i.e., fault locations and...  相似文献   
7.
Rivers respond to environmental changes such as climate shifts, land use changes and the construction of hydro‐power dams in a variety of ways. Often there are multiple potential responses to any given change. Traditionally, potential stream channel response has been assessed using simple, qualitative frameworks based largely on professional judgement and field experience, or using some form of regime theory. Regime theory represents an attempt to use a physically based approach to predict the configuration of stable channels that can transport the imposed sediment supply with the available discharge. We review the development of regime theory, and then present a specific regime model that we have created as a stand‐alone computer program, called the UBC Regime Model (UBCRM). UBCRM differs from other regime models in that it constrains its predictions using a bank stability criterion, as well as a pattern stability criterion; it predicts both the stable channel cross‐sectional dimensions as well as the number of anabranches that the stream must have in order to establish a stable channel pattern. UBCRM also differs from other models in that it can be used in a stochastic modelling mode that translates uncertainty in the input variables into uncertainty in the predicted channel characteristics. However, since regime models are fundamentally based on the concept of grade, there are circumstances in which the model does not perform well. We explore the strengths and weaknesses of the UBCRM in this paper, and we attempt to illustrate how the UBCRM can be used to augment the existing qualitative frameworks, and to help guide professionals in their assessments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
8.
The fresh groundwater lenses (FGLs) of small islands can be highly vulnerable to climate change impacts, including sea‐level rise (SLR). Many real cases of atoll or sandy islands involve two‐layer hydrogeological conceptualizations. In this paper, the influential factors that affect FGLs in two‐layer small islands subject to SLR are investigated. An analytical solution describing FGLs in circular islands, composed of two geological layers, is developed for the simplified case of steady‐state and sharp‐interface conditions. An application of the developed model is demonstrated to estimate the FGL thickness of some real‐world islands by comparison with existing FGL thickness data. Furthermore, numerical modelling is applied to extend the analysis to consider dispersion effects and to confirm comparable results for both cases. Sensitivity analyses are used to assess the importance of land‐surface inundation caused by SLR, relative to other parameters (i.e. thickness of aquifer layers, hydraulic conductivity, recharge rate and land‐surface slope) that influence the FGL. Dimensionless parameters are used to generalize the findings. The results demonstrate that land‐surface inundation has a considerable impact on a FGL influenced by SLR, as expected, although the FGL volume is more sensitive to recharge, aquifer thickness and hydraulic conductivity than SLR impacts, considering typical parameter ranges. The methodology presented in this study provides water resource managers with a rapid‐assessment tool for evaluating the likely impacts of SLR and accompanying LSI on FGLs.  相似文献   
9.
The exact number, extent and chronology of the Middle Pleistocene Elsterian and Saalian glaciations in northern Central Europe are still controversial. This study presents new luminescence data from Middle Pleistocene ice‐marginal deposits in northern Germany, giving evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). The study area is located in the Leine valley south of the North German Lowlands. The data set includes digital elevation models, high‐resolution shear wave seismic profiles, outcrop and borehole data integrated into a 3D subsurface model to reconstruct the bedrock relief surface. For numerical age determination, we performed luminescence dating on 12 ice‐marginal and two fluvial samples. Luminescence ages of ice‐marginal deposits point to at least two ice advances during MIS 12 and MIS 10 with ages ranging from 461±34 to 421±25 ka and from 376±27 to 337±21 ka. The bedrock relief model and different generations of striations indicate that the older ice advance came from the north and the younger one from the northeast. During rapid ice‐margin retreat, subglacial overdeepenings were filled with glaciolacustrine deposits, partly rich in re‐worked Tertiary lignite and amber. During MIS 8 and MIS 6, the study area may have been affected by two ice advances. Luminescence ages of glaciolacustrine delta deposits point to a deposition during MIS 8 or early MIS 6, and late MIS 6 (250±20 to 161±10 ka). The maximum extent of both the Elsterian (MIS 12 and MIS 10) and Saalian glaciations (MIS 8? and MIS 6) approximately reached the same position in the Leine valley and was probably controlled by the formation of deep proglacial lakes in front of the ice sheets, preventing a further southward advance.  相似文献   
10.
Soil microbial biomass is a primary source of soil organic carbon (SOC) and therefore plays a fundamental role in carbon and nitrogen cycling. However, little is known about the fate and transformations of microbial biomass in soil. Here we employ HR-MAS NMR spectroscopy to monitor 13C and 15N labeled soil microbial biomass and leachate degradation over time. As expected, there is a rapid loss of carbohydrate structures. However, diffusion edited HR-MAS NMR data reveals that macromolecular carbohydrates are more resistant to degradation and are found in the leachate. Aromatic components survive as dissolved species in the leachate while aliphatic components persist in both the biomass and leachate. Dissolved protein and peptidoglycan accumulate in the leachate and recalcitrant amide nitrogen and lipoprotein persists in both the degraded biomass and leachate. Cross-peaks that appear in 1H-15N HR-MAS NMR spectra after degradation suggest that specific peptides are either selectively preserved or used for the synthesis of unknown structures. The overall degradation pathways reported here are similar to that of decomposing plant material degraded under similar conditions suggesting that the difference between recalcitrant carbon from different sources is negligible after decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号