首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10166篇
  免费   1883篇
  国内免费   2232篇
测绘学   720篇
大气科学   2045篇
地球物理   2629篇
地质学   4828篇
海洋学   1174篇
天文学   428篇
综合类   1110篇
自然地理   1347篇
  2024年   34篇
  2023年   161篇
  2022年   504篇
  2021年   623篇
  2020年   502篇
  2019年   559篇
  2018年   637篇
  2017年   562篇
  2016年   628篇
  2015年   517篇
  2014年   623篇
  2013年   631篇
  2012年   603篇
  2011年   636篇
  2010年   588篇
  2009年   594篇
  2008年   529篇
  2007年   489篇
  2006年   371篇
  2005年   346篇
  2004年   287篇
  2003年   264篇
  2002年   329篇
  2001年   316篇
  2000年   321篇
  1999年   410篇
  1998年   322篇
  1997年   306篇
  1996年   280篇
  1995年   255篇
  1994年   194篇
  1993年   195篇
  1992年   144篇
  1991年   106篇
  1990年   65篇
  1989年   81篇
  1988年   69篇
  1987年   39篇
  1986年   30篇
  1985年   21篇
  1984年   18篇
  1983年   12篇
  1982年   21篇
  1981年   14篇
  1980年   9篇
  1979年   4篇
  1978年   5篇
  1974年   2篇
  1958年   13篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 243 毫秒
1.
利用最新发布的CALIPSO产品,构建了2007-2017年中国沙尘气溶胶的三维分布,并结合HYSPLIT-4模式和再分析数据,探讨了沙尘的三维输送过程。结果表明:中国的沙尘排放源区主要是塔克拉玛干沙漠和巴丹吉林沙漠,沙尘气溶胶出现频率分别为60%和35%。塔克拉玛干沙漠排放的沙尘主要(50%~70%)停留在源地0~6 000 m高度,少部分向东输送至甘肃和内蒙古;巴丹吉林沙漠排放的沙尘则主要向东输送。中国沙尘排放量在春季最大,向东输送最强;夏季,东亚夏季风限制了沙尘向东输送;秋季,沙尘排放减弱,输送强度和夏季相当;沙尘排放量在冬季最小,输送最弱。夏季,沙尘在输送过程中可被抬升至高度5 000 m以上,春季次之,秋、冬季的沙尘主要在低层大气输送。沙尘在向东输送的过程中被抬升并和当地人为污染物混合变为污染性沙尘,华北地区污染性沙尘出现频率高达30%;输送到海洋的沙尘也会与洋面上(0~3 000 m高度)的海盐气溶胶混合,出现频率约为10%。  相似文献   
2.
混合式教学模式是既能发挥教师在课堂中的启发、引导与监控作用又能提高学生参与度、体现个性化学习的一种教学模式。目前中学地理课堂仍强调死记硬背,学生学习的主观能动性不强。为了实现地理课堂的高效性,笔者应用新型智慧教学工具——“雨课堂”,通过中学地理教学实例说明实现混合式教学的基本路径,包括课前准备、课堂应用以及课后统计。  相似文献   
3.
Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native(Suaeda salsa) and invasive(Spartina alterniflora) salt marshes were selected to study the effects of Spartina alterniflora invasion on soil organic carbon(SOC) contents and stocks in the Yellow River Delta. Results showed that the SOC contents(g/kg) and stocks(kg/m~2) were significantly increased(P 0.05) after Spartina alterniflora invasion of seven years, especially for the surface soil layer(0–20 cm). The SOC contents exhibited an even distribution along the soil profiles in native salt marshes, while the SOC contents were gradually decreased with depth after Spartina alterniflora invasion of seven years. The natural ln response ratios(Ln RR) were applied to identify the effects of short-term Spartina alterniflora invasion on the SOC stocks. We also found that Spartina alterniflora invasion might cause soil organic carbon losses in a short-term phase(2–4 years in this study) due to the negative Ln RR values, especially for 20–60 cm depth. And the SOCD in surface layer(0–20 cm) do not increase linearly with the invasive age. Spearman correlation analysis revealed that silt + clay content was exponentially related with SOC in surface layer(Adjusted R~2 = 0.43, P 0.001), suggesting that soil texture could play a key role in SOC sequestration of coastal salt marshes.  相似文献   
4.
本研究通过在2017年秋冬季组织实施的2个绿潮种源调查航次,研究苏北浅滩紫菜养殖区沉积物中的大型绿藻微观繁殖体的垂直分布和物种多样性。对沉积物中的微观繁殖体的定量实验结果表明:表层泥样中绿藻微观繁殖体的丰度最高,随着深度的增加迅速降低。在9月份表层沉积物中丰度为9±2ind./g,而在11月份表层丰度达到98±25ind./g;与9月份相比, 11月份浅滩沉积物中绿藻繁殖体数量呈现出显著升高的趋势。通过对51个绿藻样品的分子鉴定发现:沉积物中存在石莼属(Ulva)、尾孢藻属(Urospora)、盘苔属(Blidingia)等大型绿藻的微观繁殖体;数量占优是石莼属繁殖体,主要包括曲浒苔(Ulva flexuosa)、浒苔(Ulva prolifera)、扁浒苔(Ulva compressa)、缘管浒苔(Ulva linza);其中曲浒苔占据的比例最高,在9和11月份分别达到80.94%和73.33%。在2个调查航次中,都从沉积物中发现了绿潮浒苔的微观繁殖体,这些微观繁殖体是绿潮浒苔在苏北浅滩种源维持的重要方式和关键阶段,也构成了黄海浒苔绿潮连年暴发的"种子库"。  相似文献   
5.
Global research progress on coastal flooding was studied using a bibliometric evaluation of publications listed in the Web of Science extended scientific citation index. There was substantial growth in coastal flooding research output, with increasing publications, a higher collaboration index, and more references during the 1995–2016 period. The USA has taken a dominant position in coastal flooding research, with the US Geological Survey leading the publications ranking. Research collaborations at institutional scales have become more important than those at global scales. International collaborative publications consistently drew more citations than those from a single country. Furthermore, coastal flooding research included combinations of multi-disciplinary categories, including ‘Geology' and ‘Environmental Sciences Ecology'. The most important coastal flooding research sites were wetlands and estuaries. While numerical modeling and 3 S(Remote sensing, RS; Geography information systems, GIS; Global positioning systems, GPS) technology were the most commonly used methods for studying coastal flooding, Lidar gained in popularity. The vulnerability and adaptation of coastal environments, their resilience after flooding, and ecosystem services function showed increases in interest.  相似文献   
6.
Reservoirs of lowland floodplain rivers with eutrophic backgrounds cause variations in the hydrological and hydraulic conditions of estuaries and low-dam reservoir areas, which can promote planktonic algae to proliferate and algal bloom outbreaks. Understanding the ecological effects of variations in hydrological and hydraulic processes in lowland rivers is important for algal bloom control. In this study, the middle and lower reaches of the Han River, China, a typical regulated lowland river with a eutrophic background, are selected. Based on the effect of hydrological and hydraulic variability on algal blooms, a hydrological management strategy for river algal bloom control is proposed. The results showed that (a) differences in river morphology and background nutrient levels cause significant differences in the critical threshold flow velocities for algal bloom outbreaks between natural river and low-dam reservoir sections; there is no uniform threshold flow velocity for algal bloom control. (b) There are significant differences in the river hydrological/hydraulic conditions between years with and without algal blooms. The average river flow, water level and velocity in years with algal blooms are significantly lower than those in years without algal blooms. (c) For different river sections where algal blooms occur and to meet the threshold flow velocities, the joint operation of cascade reservoirs and diversion projects is an effective method to prevent and control algal blooms in regulated lowland rivers. This study is expected to deepen our understanding of the ecological significance of special hydrological processes and guide algal bloom management in regulated lowland rivers.  相似文献   
7.
刘佳  贾楠 《海洋通报》2018,(4):378-388
在改进计划行为理论(TPB)模型基础上,引入人口特征和游艇文化变量,构建游艇旅游行为意向的影响机制模型,以实地调研和问卷调查作为数据来源,运用结构方程模型(SEM)实证检验影响旅游者参与游艇旅游行为意向的主要因素及其作用机制。研究表明:当前我国旅游者参与游艇旅游的意向较高;旅游者的行为态度、主观规范、感知行为控制和游艇文化是影响其选择游艇旅游活动的重要因素;旅游者的行为态度、游艇文化2个变量对游艇旅游行为意向具有显著的正向影响;主观规范和感知行为控制均通过行为态度这一中介变量间接影响游艇旅游行为意向。  相似文献   
8.
Understanding the effects of simulated warming on photosynthetic performance of aquatic plants may provide strong supports for predicting future dynamics of wetland ecosystems in the context of climate change. The plateau wetlands located in Yunnan province are highly sensitive to climate warming due to their high altitude and cold temperature. Here, we conducted a temperaturecontrolled experiment using two temperature manipulations (ambient temperature as the control and 2°C higher than ambient temperature as the warmed treatment) to determine the photosynthetic characteristics of two lakeside dominant species (Scirpus validus Vahl and Typha orientalis C. Presl.) in Dianchi Lake. Net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate of S. validus that grew under warmed treatment were all significantly higher than those under the control. Gs and Ci of T. orientalis showed similar patterns as S. validus did. For the response curves of Pn to photosynthetic active radiation (Pn-PAR) and intercellular CO2 concentration (Pn-Ci), S. validus had higher Pn values under elevated temperatures than the control, while Pn-PAR and Pn-Ci curves of T. orientalis did not separate clearly under two temperature scenarios. Both S. validus and T. orientalis had higher maximum net photosynthetic rate, light saturation point, dark respiration rate, the maximum rate of RuBP carboxylation (Vcmax), maximum electron transport rate driving RuBP regeneration (Jmax), the ratio of Vcmax to Jmax, triosephosphate utilization, and 1, 5-bishosphate carboxylase ribulose content under warmed treatment than those under the control. This study provides a preliminary step for predicting the future primary production and vegetation dynamics of plateau wetlands in Yunnan province.  相似文献   
9.
Northeast China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. However, the underlying forces driving haze formation during different seasons are poorly understood. In this study, we explored the spatio-temporal characteristics and causes of haze events in Northeast China by combining a range of data sources(i.e., ground monitoring, satellite-based products, and meteorological products). It was found that the ‘Shenyang-Changchun-Harbin(SCH)'city belt was the most polluted area in the region on an annual scale. The spatial distribution of air quality index(AQI) values had a clear seasonality, with the worst pollution occurring in winter, an approximately oval-shaped polluted area around western Jilin Province in spring, and the best air quality occurring in summer and most of the autumn. The three periods that typically experienced intense haze events were Period I from mid-October to mid-November(i.e., late autumn and early winter), Period II from late-December to February(i.e., the coldest time in winter), and Period III from April to mid-May(i.e., spring). During Period I, strong PM_(2.5) emissions from seasonal crop residue burning and coal burning for winter heating were the dominant reasons for the occurrence of extreme haze events(AQI 300). Period II had frequent heavy haze events(200 AQI 300) in the coldest months of January and February, which were due to high PM_(2.5) emissions from coal burning and vehicle fuel consumption, a lower atmospheric boundary layer, and stagnant atmospheric conditions. Haze events in Period III, with high PM_(10) concentrations, were primarily caused by the regional transportation of windblown dust from degraded grassland in central Inner Mongolia and bare soil in western Jilin Province. Local agricultural tilling could also release PM_(10) and enhance the levels of windblown dust from tilled soil. Better control of coal burning, fuel consumption, and crop residue burning in winter and autumn is urgently needed to address the haze problem in Northeast China.  相似文献   
10.
Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers (0-400 cm depth) was measured before and after the rainy season in severe drought (2015) and normal hydrological year (2016) in three vegetation restoration areas (artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers (0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers (below 100 cm). In 2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号