首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   4篇
测绘学   4篇
大气科学   20篇
地球物理   21篇
地质学   28篇
海洋学   5篇
天文学   20篇
自然地理   1篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   1篇
  2011年   5篇
  2010年   12篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1948年   2篇
排序方式: 共有99条查询结果,搜索用时 31 毫秒
1.
We investigate the role of seasonal variations of Titan’s stratospheric composition on the temperature. We use a general circulation model coupled with idealized chemical tracers that reproduce variations of ethane (C2H6), acetylene (C2H2), and hydrogen cyanide (HCN). Enhancement of the mole fractions of these compounds, at high latitudes in the winter hemisphere relative to their equatorial values, induces a relative decrease in temperature above approximately 0.2 mbar, with a peak amplitude around −20 K, and a relative increase in temperature below, around 1 mbar, with a peak amplitude around +7 K. These thermal effects are mainly due to the variations of the cooling to space induced by the varying distributions. The ethane, acetylene, and hydrogen cyanide variations affect the cooling rates in a similar way, with the dominant effect being due to ethane, though its latitudinal variations are small.  相似文献   
2.
D. Luz  F. Hourdin  S. Lebonnois 《Icarus》2003,166(2):343-358
We present a 2D general circulation model of Titan's atmosphere, coupling axisymmetric dynamics with haze microphysics, a simplified photochemistry and eddy mixing. We develop a parameterization of latitudinal eddy mixing by barotropic waves based on a shallow-water, longitude-latitude model. The parameterization acts locally and in real time both on passive tracers and momentum. The mixing coefficient varies exponentially with a measure of the barotropic instability of the mean zonal flow. The coupled GCM approximately reproduces the Voyager temperature measurements and the latitudinal contrasts in the distributions of HCN and C2H2, as well as the main features of the zonal wind retrieved from the 1989 stellar occultation. Wind velocities are consistent with the observed reversal time of the North-South albedo asymmetry of 5 terrestrial years. Model results support the hypothesis of a non-uniform distribution of infrared opacity as the cause of the Voyager temperature asymmetry. Transport by the mean meridional circulation, combined with polar vortex isolation may be at the origin of the latitudinal contrasts of trace species, with eddy mixing remaining restricted to low latitudes most of the Titan year. We interpret the contrasts as a signature of non-axisymmetric motions.  相似文献   
3.
The atmospheric circulation of Titan is investigated with a general circulation model. The representation of the large-scale dynamics is based on a grid point model developed and used at Laboratoire de Météorologie Dynamique for climate studies. The code also includes an accurate representation of radiative heating and cooling by molecular gases and haze as well as a parametrization of the vertical turbulent mixing of momentum and potential temperature. Long-term simulations of the atmospheric circulation are presented. Starting from a state of rest, the model spontaneously produces a strong superrotation with prograde equatorial winds (i.e., in the same sense as the assumed rotation of the solid body) increasing from the surface to reach 100 m sec-1 near the 1-mbar pressure level. Those equatorial winds are in very good agreement with some indirect observations, especially those of the 1989 occultation of Star 28-Sgr by Titan. On the other hand, the model simulates latitudinal temperature contrasts in the stratosphere that are significantly weaker than those observed by Voyager 1 which, we suggest, may be partly due to the nonrepresentation of the spatial and temporal variations of the abundances of molecular species and haze. We present diagnostics of the simulated atmospheric circulation underlying the importance of the seasonal cycle and a tentative explanation for the creation and maintenance of the atmospheric superrotation based on a careful angular momentum budget.  相似文献   
4.
Soil water repellency is a widespread phenomenon with the capacity to alter hydrological and geomorphological processes. Water repellency decays with time, and the consequences are only of concern during the timescale at which the water repellency persists. This study aimed to characterize the influence of temperature and humidity on the breakdown of water repellency. Apparent contact angle measurements were carried out on samples consisting of sand treated with stearic acid as well as naturally repellent dune sands and composts. Temperature and humidity were controlled using a cooled incubator and a purpose designed enclosed box in which humidity could be raised or lowered. Results showed the contact angle of the stearic‐acid‐treated sands decayed with time and that there was a significant increase with stearic acid concentration. For all samples, the decay in apparent contact angle could be described with a continuous breakdown model. The stearic‐acid‐treated sands showed a significant increase in contact angle with relative humidity at a temperature of 10 and 20 °C. These differences diminished with increasing temperature. Similar results were seen for the dune sands and composts. Despite the influence of temperature and humidity on contact angles, there was no significant change in the rate at which the contact angle decayed in any sample. Absolute humidity was found to provide a more relevant indicator than relative humidity when assessing the influence of humidity on repellency over a range of temperatures. The contact angle initially increased with absolute humidity before plateauing owing to the confounding effect of temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
6.
The structures and microstructures of the Takanuki and Hitachi areas in the Abukuma massif, Northeast Japan are described. In the Takanuki area, the basic Gosaisho series thrusts the pelitic Takanuki ones in a HP metamorphic context. The nappe structure is afterwards refolded by a migmatitic dome: the Samegawa dome, in a HT metamorphic context. Microtectonic analysis shows that the nappe was transported from south to north along the stretching lineation. Geometric features suggest that the Samegawa dome was emplaced by diapirism. The role of the thrust surface as an instable interface promoting the doming is emphasized. The Hitachi metamorphic rocks composed of basic schist, limestone and sandstone shist thrust the pelitic rocks of the western Hitachi gneisses. As for the Takanuki area, the thrusting occurred in ductile synmetamorphic conditions with a north or northeastward displacement. Owing to lithologic, petrologic, structural similitudes, the nappe of the Hitachi metamorphic rocks and that of the Gosaisho series are unified into a unique nappe with a northward motion. The emplacement occurred between late Permian and late Cretaceous likely in late Jurassic. The allochthonous units of the Abukuma massif are correlated with the Green Schist nappe described in Southwest Japan, since they are surrounded by the same zones, namely the Tanba zone and the Kurosegawa-Kitakami one. Moreover both in Southwest and Northeast Japan, the emplacement of the Green Schist nappes is due to a shear deformation inducing rotational structures along the stretching lineation indicating the same sense of transport, that is eastward in Southwest Japan and northward in Northeast Japan, owing to the late bending of the Japanese Islands. The late Jurassic nappe structure is obliquely overprinted by a HT metamorphism, Ryoke in Southwest Japan, Abukuma in Northeast Japan, and afterwards cut by late faults as the Median Tectonic Line or the Tanakura fault, giving rise to the present complexity.  相似文献   
7.
A climatology of the stratosphere is determined from a 20-year integration with the stratospheric version of the Atmospheric General Circulation Model LMDz. The model has an upper boundary at near 65 km, uses a Doppler spread non-orographic gravity waves drag parameterization and a subgrid-scale orography parameterization. It also has a Rayleigh damping layer for resolved waves only (not the zonal mean flow) over the top 5 km. This paper describes the basic features of the model and some aspects of its radiative-dynamical climatology. Standard first order diagnostics are presented but some emphasis is given to the model’s ability to reproduce the low frequency variability of the stratosphere in the winter northern hemisphere. In this model, the stratospheric variability is dominated at each altitudes by patterns which have some similarities with the arctic oscillation (AO). For those patterns, the signal sometimes descends from the stratosphere to the troposphere. In an experiment where the parameterized orographic gravity waves that reach the stratosphere are exaggerated, the model stratosphere in the NH presents much less variability. Although the stratospheric variability is still dominated by patterns that resemble to the AO, the downward influence of the stratosphere along these patterns is near entirely lost. In the same time, the persistence of the surface AO decreases, which is consistent with the picture that this persistence is linked to the descent of the AO signal from the stratosphere to the troposphere. A comparison between the stratospheric version of the model, and its routinely used tropospheric version is also done. It shows that the introduction of the stratosphere in a model that already has a realistic AO persistence can lead to overestimate the actual influence of the stratospheric dynamics onto the surface AO. Although this result is certainly model dependent, it suggests that the introduction of the stratosphere in a GCM also call for a new adjustment of the model parameters that affect the tropospheric variability.  相似文献   
8.
Uppermost Jurassic limestones of the South‐East Basin (France) are organized into four facies associations that were deposited in four distinct zones: (1) peritidal lagoonal limestones; (2) bioclastic and reefal limestones; (3) pelagic lime mudstones; (4) lime mudstones/calcarenites/coarse breccias. Calcarenite deposits of zone 4 exhibit sedimentary structures that are diagnostic of deposition under wave‐induced combined flow. In subzone 4a, both vertical and lateral transitions from lime mudstone/calcarenite to breccia indicate in situ brecciation under wave‐cyclic loading. Breccias were produced by heterogeneous liquefaction of material previously deposited on the sea floor. Deposits in subzone 4a record relatively long periods (>400 kyr) of sedimentation below wave base, alternating with periods of deposition under wave‐induced currents and periods of in situ deformation. In this zone, storm waves were attenuated by wave–sediment interaction, and wave energy was absorbed by the deformation of soft sediment. With reference to present‐day wave attenuation, water depths in this zone ranged between 50 and 80 m. Landwards of the attenuation zone, in zone 3, storm waves were reduced to fair‐weather wave heights. Storm wave base was not horizontal and became shallower landwards. As a consequence, water depth and wave energy were not linearly related. On a small area of the seaward edge of subzone 4a, cobbles were removed by traction currents and redeposited in subzone 4b. There, they formed a 100‐m‐thick wedge, which prograded over 3 km and was built up by the stacking of 5‐ to 20‐m‐thick cross‐stratified sets of coarse breccia. This wedge records the transport and redeposition of cobbles by a high‐velocity unidirectional component of a combined flow. The increase in flow velocity in a restricted area is proposed to result from flow concentration in a channel‐like structure of the downwelling in the gulf formed by the basin. In more distal subzone 4c, the hydrodynamic effect of wave‐induced currents was quasi‐permanent, and brecciation by wave–sediment interaction occurred only episodically. This indicates that, seawards of the attenuation zone, hydrodynamic storm wave base was deeper than mechanical storm wave base. Uppermost Jurassic carbonates were deposited and soft‐sediment deformed on a hurricane‐dominated ramp of very gentle slope and characterized by a zone of storm wave degeneration, located seawards of a zone of sedimentation below wave base.  相似文献   
9.
The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model.  相似文献   
10.
Mollusk shells are increasingly used as records of past environmental conditions, particularly for sea-surface temperature (SST) reconstructions. Many recent studies tackled SST (and/or sea-surface salinity) tracers through variations in the elementary (Mg and Sr) or stable isotope (δ18O) composition within mollusk shells. But such attempts, which sometimes include calibration studies on modern specimens, are not always conclusive. We present here a series of Mg and Sr analyses in the calcitic layer of Concholepas concholepas (Muricidae, Gastropoda) with a very high time-resolution on a time window covering about 1 and a half month of shell formation, performed by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS) and electron probe micro-analysis (EPMA). The selected specimen of this common Chilean gastropod was grown under controlled environmental conditions and precise weekly time-marks were imprinted in the shell with calcein staining. Strontium variations in the shell are too limited to be interpreted in terms of environmental parameter changes. In contrast, Mg incorporation into the shell and growth rate appear to change systematically between night and day. During the day, Mg is incorporated at a higher rate than at night and this intake seems positively correlated with water temperature. The nightly reduced Mg incorporation is seemingly related to metabolically controlled processes, formation of organic-rich shell increments and nocturnal feeding activity of the animals. The nyctemeral Mg changes in the C. concholepas shell revealed in this study might explain at least part of the discrepancies observed in previous studies on the use of Mg as a SST proxy in mollusk shells. In the case of C. concholepas, Mg cannot be used straightforwardly as a SST proxy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号