首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
自然地理   1篇
  2013年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Indexing methods are used for the evaluation of aquifer vulnerability and establishing guidelines for the protection of ground-water resources. The principle of the indexing method is to rank influences on groundwater to determine overall vulnerability of an aquifer to contamination. The analytic element method (AEM) of ground-water flow modeling is used to enhance indexing methods by rapidly calculating a potentiometric surface based primarily on surface-water features. This potentiometric map is combined with a digital-elevation model to produce a map of water-table depth. This is an improvement over simple water-table interpolation methods. It is physically based, properly representing surface-water features, hydraulic boundaries, and changes in hydraulic conductivity. The AEM software, SPLIT, is used to improve an aquifer vulnerability assessment for a valley-fill aquifer in western New York State. A GIS-based graphical user interface allows automated conversion of hydrography vector data into analytic elements.  相似文献   
2.
Environmental simulation models need automated geographic data reduction methods to optimize the use of high-resolution data in complex environmental models. Advanced map generalization methods have been developed for multiscale geographic data representation. In the case of map generalization, positional, geometric and topological constraints are focused on to improve map legibility and communication of geographic semantics. In the context of environmental modelling, in addition to the spatial criteria, domain criteria and constraints also need to be considered. Currently, due to the absence of domain-specific generalization methods, modellers resort to ad hoc methods of manual digitization or use cartographic methods available in off-the-shelf software. Such manual methods are not feasible solutions when large data sets are to be processed, thus limiting modellers to the single-scale representations. Automated map generalization methods can rarely be used with confidence because simplified data sets may violate domain semantics and may also result in suboptimal model performance. For best modelling results, it is necessary to prioritize domain criteria and constraints during data generalization. Modellers should also be able to automate the generalization techniques and explore the trade-off between model efficiency and model simulation quality for alternative versions of input geographic data at different geographic scales. Based on our long-term research with experts in the analytic element method of groundwater modelling, we developed the multicriteria generalization (MCG) framework as a constraint-based approach to automated geographic data reduction. The MCG framework is based on the spatial multicriteria decision-making paradigm since multiscale data modelling is too complex to be fully automated and should be driven by modellers at each stage. Apart from a detailed discussion of the theoretical aspects of the MCG framework, we discuss two groundwater data modelling experiments that demonstrate how MCG is not just a framework for automated data reduction, but an approach for systematically exploring model performance at multiple geographic scales. Experimental results clearly indicate the benefits of MCG-based data reduction and encourage us to continue expanding the scope of and implement MCG for multiple application domains.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号