首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   4篇
自然地理   1篇
  2011年   2篇
  2005年   1篇
  2004年   1篇
  1995年   2篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
We present results of three sand-box experiments that model the association between tectonic accretion and sedimentation in a forearc basin. Experimental sedimentation occurs step by step in the forearc basin during shortening of the sand wedge. In each experiment, the development of the accretionary wedge leads to the formation of a major backthrust zone. This major deformation zone accounts for the thickening in the rear part of the wedge. In natural settings this tectonic bulge dams sediments that are transported toward the trench from mountainous terrain behind the forearc. We test the variation of friction along the déollement and note the following: (1) shortening of a low-friction wedge involves a mechanical balance between forethrusts and backthrust propagation and this balance is recorded by the sedimentary sequence trapped in the forearc basin. Indeed, if most of the movement occurs along the backthrust, the deepening of the basin will be larger and consequently the thickness of the sedimentary sequence will be greater. (2) Such balance does not exist in the case of a high-friction wedge. (3) Variation of friction along the décollement during shortening of the sand wedge leads to modification in the forearc basin filling. Thus, for similar increments of convergence, the sequence deposited in the forearc basin shows relatively larger thickness when the wedge is shortened above a high-friction décollement. We suggest that contraction and thickening in the rear part of the wedge is an efficient mechanism to, initiate and develop a forearc basin. Thus, this kind of basin occurs in convergent settings, without collapse related to local extension or tectonic erosion. They represent a sedimentary trap on a passive basement, bounded by a tectonic bulge. The Quaternary Hikurangi forearc basin, southeast of the North Island of New Zealand, is bounded by two actively uplifting ridges. Thus, this basin is considered to be a possible example of the basins modelled in our experiments, and we suggest that the limit between the basin and the wedge could be a complex backthrust zone.  相似文献   
2.
The presently active sinistral Xianshui He strike-slip fault (XSH) is a lithospheric scale strike-slip fault in the eastern Himalaya. In the study area this fault affects the eastern edge of the Konga Shan granitic massif, where it has caused both brittle and ductile deformation. A RbSr isochron and Nd and Pb isotope study of three samples, and a UPb zircon study of a single sample, were completed on the granite.

UPb data indicate a granite emplacement age of 12.8 ± 1.4 Ma. The RbSr isochrons show that the granite emplacement and the deformational event were synchronous, at around 12-10 Ma (minimum age for deformation). The Nd and Pb isotope compositions of whole rocks and K-feldspars indicate the involvement of Proterozoic continental crust, which is confirmed by UPb systematics indicating inherited zircons.

Sinistral faulting along the XSH began at the latest at 12 Ma and marks the extrusion toward the east of the West Sichuan and South China blocks, following their extrusion along the Red River fault zone between 50 and 21 Ma.  相似文献   

3.
The Permian–Triassic Boundary sequence at Çürük Dag, near Antalya, Turkey, begins with a major erosion surface interpreted as being the Late Permian lowstand, on which lies ca 0·4 m of grainstone/packstone composed of ooids, peloids and bioclasts. Most ooids are superficial coats on fragments of calcite crystals presumed to be eroded from crystal fans which are no longer present. The erosion surface is smooth and shows no evidence of dissolution; the grainstone/packstone contains intraclasts of the underlying wackestone, proving erosion. Next are 15 m of microbialite comprised of interbedded stromatolites, thrombolites, plus beds of planar limestones with small‐scale erosion. The latter comprise a complex interlayering of stromatolitic, thrombolitic and peloidal fabrics and precipitated crystal fans, which form a hybrid of microbialite and inorganic carbonate, together with bioclastic debris and micrite. The Çürük Dag microbialite sequence is repetitious; the lower part is more complex, with abundant stromatolites and hybrid microbialites. Some of the stromatolites are themselves hybrids composed of peloids and crystal fans. In the upper part of the sequence stromatolites are missing and the rock is composed mostly of recrystallized thrombolites that develop upwards from tabular to domal form. The domes form directly below small breaks in microbialite growth where very thin shelly micrites and grainstones/packstones are deposited. Repetition of facies may be controlled by sea‐level change; a deepening‐up model is consistent with the evidence. Stromatolites (with abundant crystal fans) dominate in shallower water, deepening through hybrid microbialite and interlayered sediments to thrombolite, probably no more than a few tens of metres deep, followed by breaks and renewal of microbialite growth. An interpretation of open marine fully oxygenated waters for microbialite growth is consistent with ongoing parallel work that has identified Bairdioid ostracods in the microbialite, a group known to be open marine. However, other researchers have proposed low oxygen conditions for Permian–Triassic boundary facies globally, so work continues to confirm whether the Çürük Dag microbialite grew in dysoxic or normally oxygenated conditions. The principal stimulus for post‐extinction microbialites is likely to be carbonate supersaturation of the oceans. The microbialite sequence is overlain by a further 25 m of grainstone/packstone (without microbialite), followed by Early Triassic shales. Overall, microbialites form a thin aggradational sequence during an overall relative sea‐level rise, consistent with global eustatic rise following the Late Permian lowstand.  相似文献   
4.
This study is based on a set of coarse-grained igneous rockscollected from two zoned plutons located in the central partof Tahiti Nui and Raiatea. The Ahititera pluton (central depressionof Tahiti Nui) comprises a great diversity of rocks, rangingfrom ultrabasic to felsic in composition. It shows a concentriczonation with nepheline-free rocks in its periphery and nepheline-bearingrocks in its central part. The Faaroa pluton (central depressionof Raiatea) is entirely mafic and includes only gabbros andtheralites. The two plutons have variable Nd–Sr isotopicsignatures, especially the Ahititera rocks, which are subdividedinto three groups based on their mineralogy, geochemistry andisotope composition. The isotopic variability probably reflectslocal heterogeneities in the Society mantle plume. Petrographicand isotopic data have been used to define two magmatic suitesin Ahititera, identifiable from their degree of Si undersaturation.The evolution of the mildly Si-undersaturated suite is controlledby simple fractional crystallization, whereas the strongly Si-undersaturatedsuite requires additional H2O influx. The third isotopic groupincludes only theralites. The rare earth element (REE) compositionsof the mafic rocks from both plutons do not correlate with theirisotopic signature. The REE patterns of the most Si-undersaturatedrocks are systematically characterized by steeper slopes. Suchfeatures are also observed in lavas from seamounts located withinthe present-day hotspot area. It appears that REE concentrationsin Society lavas and intrusives are probably mainly governedby variable degrees of partial melting of a garnet-free mantlesource and are independent of their isotopic signature. KEY WORDS: cumulates; fractional crystallization; partial melting; French Polynesia; plutonic rocks; Society Islands; Tahiti; Raiatea  相似文献   
5.
Corona, C., Edouard, J.‐L., Guibal, F., Guiot, J., Bernard, S., Thomas, A. & Denelle, N. 2010: Long‐term summer (AD751–2008) temperature fluctuation in the French Alps based on tree‐ring data. Boreas, 10.1111/j.1502‐3885.2010.00185.x. ISSN 0300‐9843. On the basis of a dense tree‐ring width network (34 unpublished multi‐centennial larch chronologies), this paper attempts to reconstruct, for the first time, the summer temperatures in the French Alps (44°–45.30°N, 6.30°–7.45°E) during the last millennium. The adaptative Regional Growth Curve standardization method is applied to preserve interannual to multi‐centennial variations in this high‐elevation proxy data set. The proxies are calibrated using the June to August mean temperatures from the last revised version of the HISTALP database spanning the period AD1760–2003 and adjusted to take into account the warm bias before 1850. About 45% of the temperature variance is reconstructed. Despite the use of the newly updated meteorological data set, the reconstruction still shows colder temperatures than early instrumental measurements between 1760 and 1840. The proxy record evidences a prolonged Medieval Warm Period persisting until 1500, with warm periods that resemble 20th century conditions but also cold phases before 1000 synchronous with Swiss glacier advances. The Little Ice Age is rather mild until 1660 if compared with other Alpine reconstructions. Thereafter, summers are 0.7 °C cooler than the 1961–1990 mean until 1920. The maximum temperature amplitude over the past 1250 years is estimated to be 3 °C between the warmest (810s, 1990s) and coldest (1810s) decades. Most of the 20th century is comparable with the Medieval Warm Period.  相似文献   
6.
New U–Pb and Rb–Sr geochronology on syn- and post-orogenic granites provide constraints on the timing of major tectonic events in the Songpan–Garzê fold belt, west Sichuan, China. The Ma Nai granite was probably syn-kinematic with the main deformation and yields an age of 197±6 Ma that is interpreted as an upper age limit of the Indosinian event. Zircons and apatites from the post-kinematic Rilonguan granite also yield Jurassic ages (195±6 and 181±4 Ma). The post-orogenic Markam massif gives two ages of 188±1 and 153±3 Ma. Both granites are undeformed and cut structures in the Triassic sedimentary rocks. These results demonstrate that the major deformation and décollement tectonics in the Songpan–Garzê fold belt occurred prior to the Early Jurassic. The wide range of ages obtained for post-kinematic granites (from Early Jurassic to Late Jurassic) suggests that, locally, magmatic activity persisted for a long time (at least 50 Ma) after the Indosinian compressional tectonism. No Tertiary ages have been obtained, suggesting that these granites were not affected strongly by the India–Asia collision.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号