首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
地球物理   2篇
地质学   6篇
天文学   8篇
自然地理   1篇
  2016年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
排序方式: 共有17条查询结果,搜索用时 281 毫秒
1.
2.
It is shown that the dependence of the variations of vertical component of the polar cap magnetic field on the sector structure (actually, the azimuthal or Y component) of the interplanetary magnetic field as first discovered by Svalgaard (1968) and Mansurov (1969) extends to variations as brief as 1 hr or even less. The relation between sector structure dependent variations and substorm fields as indicated by the southward-directed component of the interplanetary magnetic field is investigated by comparing brief variations over selected intervals of time. The independence of the variations of the polar cap vertical and horizontal components suggests that there are at least two different current systems which produce brief variations in the polar cap. One of the current systems is related to the substonn field; the other is strongly seasonally dependent and is confined to the dayside sector of the Earth.  相似文献   
3.
It is shown that a significant part, if not all, of the DP-2 variation can reasonably be explained by the combined effect of the equatorward expansion of the permanent Sqp current system and its enhancement. Both phenomena are now found to be controlled by the northsouth component of interplanetary magnetic field. Thus, it is concluded that the DP-2 variation arises from a modulation of the permanently existing Sqp current system by the interplanetary magnetic field, rather than by an intermittent growth of a particular type of current system.  相似文献   
4.
The magnetic fields produced by a three-dimensional current system, consisting of a flow into the morning part of the auroral oval along tail-like field lines, along the auroral oval and out from the evening part of the oval along tail-like field lines, are computed. It is demonstrated that the major parts of the well-known ‘positive bay’ in low latitudes on the Earth's surface, the positive H variation at the synchronous distance and the positive Bs variation along the magnetotail during magnetospheric substorms can be caused by the proposed current system.  相似文献   
5.
To understand deep groundwater flow systems and their interaction with CO2 emanated from magma at depth in a volcanic edifice, deep groundwater samples were collected from hot spring wells in the Aso volcanic area for hydrogen, oxygen and carbon isotope analyses and measurements of the stable carbon isotope ratios and concentrations of dissolved inorganic carbon (DIC). Relations between the stable carbon isotope ratio (δ13CDIC) and DIC concentrations of the sampled waters show that magma-derived CO2 mixed into the deep groundwater. Furthermore, groundwaters of deeper areas, except samples from fumarolic areas, show higher δ13CDIC values. The waters' stable hydrogen and oxygen isotope ratios (δD and δ18O) reflect the meteoric-water origin of that region's deep groundwater. A negative correlation was found between the altitude of the well bottom and the altitude of groundwater recharge as calculated using the equation of the recharge-water line and δD value. This applies especially in the Aso-dani area, where deeper groundwater correlates with higher recharge. Groundwater recharged at high altitude has higher δ13CDIC of than groundwater recharged at low altitude, strongly suggesting that magmatic CO2 is present to a much greater degree in deeper groundwater. These results indicate that magmatic CO2 mixes into deeper groundwater flowing nearer the magma conduit or chamber.  相似文献   
6.
Unusually rapid closure of stressed fractures, observed in the initial stages of loading and at low temperatures, is examined using models for subcritical crack growth and pressure solution. The model for stress corrosion examines tensile stress concentrations induced at the Hertzian contact of propping fracture asperities, and mediates fracture growth according to a kinetic rate law. Conversely, pressure solution is described by the rate-limiting process of dissolution, resulting from the elevated stresses realized at the propping asperity contact. Both models are capable of following the observed compaction of fractures in novaculite. However, closure rates predicted for stress corrosion cracking are orders of magnitudes faster than those predicted for pressure dissolution. For consistent kinetic parameters, predictions from stress corrosion better replicate experimental observations, especially in the short-term and at low temperature when mechanical effects are anticipated to dominate. Rates and magnitudes of both stress corrosion and pressure solution are dependent on stresses exerted over propping asperities. Rates of closure due to stress corrosion cracking are shown to be always higher than for pressure solution, except where stress corrosion ceases as contact areas grow, and local stresses drop below an activation threshold. A simple rate law is apparent for the progress of fracture closure, defined in terms of a constant and an exponent applied to the test duration. For current experimental observations, this rate law is shown to replicate early progress data, and shows promise to define the evolution of transport properties of fractures over extended durations.  相似文献   
7.
Three dimensional electric fields were measured at the altitude of about 27 km in the stratosphere over the Pacific Ocean about 200–400 km away from the Sanriku coast of Honsyu Island (L = 1·4) on 16–17 October 1973, which was magnetically disturbed. The average horizontal electric field thus measured is about 10 mV/m, and the electric field vectors made clockwise semidiurnal rotations rather than diurnal. Daily variation of this electric field was compared with data at L = 2·7–3·5 published by Mozer (1973) and was found to be very similar. This suggests that these electric fields are of common origin in the plasmasphere. From their mean daily variation it is estimated that the plasmaspheric convection is decreased in the night side and is increased in the day side by 200–300 m/sec, and there is an outward flow in the first half of the afternoon and an inward flow in the plasma bulge region of about 500 m/sec.  相似文献   
8.
We propose a model three-dimensional current system for the magnetospheric substorm, which can account for the new findings of the field-aligned and ionospheric currents obtained during the last few years by using new techniques. They include (1) the ionospheric currents at the auroral latitude deduced from the Chatanika incoherent scatter radar data, (2) the field-aligned currents inferred from the vector magnetic field observations by the TRIAD satellite and (3) the global distribution of auroras with respect to the auroral electrojets appearing in DMSP satellite photographs. The model current system is also tested by a computer model calculation of the ionospheric current pattern. It is shown that the auroral electrojets have a strong asymmetry with respect to the midnight meridian. The westward electrojet flows along the discrete aurora in the evening sector, as well as along the diffuse aurora in the morning sector. The eastward electrojet flows equatorward of the westward electrojet in the evening sector. It has a northward component and joins the westward electrojet by turning westward across the Harang discontinuity. Thus, the latitudinal width of the westward electrojet in the morning sector is much larger than that in the evening sector. The field-aligned currents, consisting of two pairs of upward and inward currents (one is located in the morning sector and the other in the evening sector), are closed neither simply by the east-west ionospheric currents nor by the north-south currents, but by a complicated combination of the north-south and east-west paths in the ionosphere. The magnetospheric extension of the current system is also briefly discussed.  相似文献   
9.
Transient changes in the permeability of fractures in systems driven far‐from‐equilibrium are described in terms of proxy roles of stress, temperature and chemistry. The combined effects of stress and temperature are accommodated in the response of asperity bridges where mineral mass is mobilized from the bridge to the surrounding fluid. Mass balance within the fluid accommodates mineral mass either removed from the flow system by precipitation or advection, or augmented by either dissolution or advection. Where the system is hydraulically closed and initially at equilibrium, reduction in aperture driven by the effects of applied stresses and temperatures will be augmented by precipitation on the fracture walls. Where the system is open, the initial drop in aperture may continue, and accelerate, where the influent fluid is oversaturated with respect to the equilibrium mineral concentration within the fluid, or may reverse, if undersaturated. This simple zero‐dimensional model is capable of representing the intricate behavior observed in experiments where the feasibility of fracture sealing concurrent with net dissolution is observed. This zero‐order model is developed as a constitutive model capable of representing key aspects of changes in the transport parameters of the continuum response of fractured media to changes in stress, temperature and chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
10.
Examining the evolution of fracture permeability under stressed and temperature-elevated conditions, a series of flow-through experiments on a single rock fracture in granite has been conducted under confining pressures of 5 and 10 MPa, under differential water pressures ranging from 0.04 to 0.5 MPa, and at temperatures of 20–90 °C, for several hundred hours in each experiment. Measurements of fluid and dissolved mass fluxes, and post-experimental microscopy, were conducted to constrain the progress of mineral dissolution and/or precipitation and to examine its effect on transport properties. Generally, the fracture aperture monotonically decreased with time at room temperature, and reached a steady state in relatively short periods (i.e., <400 h). However, once the temperature was elevated to 90 °C, the aperture resumed decreasing and kept decreasing throughout the rest of the experimental periods. This reduction may result from the removal of the mineral mass from the bridging asperities within the fracture. Post-experimental observations by scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy (SEM-EDX), revealed the formation of several kinds of secondary minerals such as silica and calcite. However, the precipitated minerals seemed to have had little influence on the flow characteristics within the fracture, because the precipitation was limited to quite local and small areas. The evolving rates and ultimate magnitudes of the fracture aperture are likely to be controlled by the stress exerted over the contacting asperities and temperatures, and by the prescribed flow conditions. Thus, this complex behavior should be attributed to the coupled chemically- and mechanically-induced effect. A coupled chemo–mechano conceptual model, accounting for pressure and free-face dissolutions, is presented in this paper to follow the evolution of the fracture permeability observed in the flow-through experiments. This model addresses the two dissolution processes at the contacting asperities and the free walls within the fractures, and is also capable of describing multi-mineral dissolution behavior. The model shows that the evolution of a fracture aperture (or related permeability) and of element concentrations may be followed with time under arbitrary temperature and pressure conditions. The model predictions for the evolving fracture aperture and elements concentrations show a relatively good agreement with the experimental measurements, although it is not possible to replicate the abrupt reduction observed in the early periods of the experiments, which is likely to be due to an unaccounted mechanism of more stress-mediated fracture compaction driven by the fracturing of the propping asperities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号