首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地质学   2篇
自然地理   3篇
  2014年   1篇
  2008年   3篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Two tree-ring chronologies of stone pine ( Pinus cembra L.) and two of Norway spruce ( Picea abies Karst.) were constructed on the basis of data from three high-altitude sites in the Trafoi Valley (Central Alps, Italy) to test tree species sensitivity to climate at different sites and to explore the potential of the two species for reconstructing the mass balance of two glaciers in the same region (the Careser and Hintereis glaciers). Influence of climate on tree-ring growth and on glacier mass variations was tested by means of Pearson's correlation and response functions. At highest altitude sites, both species appeared to be sensitive to July temperatures, while stone pine also showed higher sensitivity than Norway spruce to previous winter precipitation. Comparing the dendrochronological and glaciological series, stone pine showed higher negative correlations with glacier mass balance series than Norway spruce. These different relationships reflect different species responses to climate, and stone pine is potentially useful in reconstructing past glacier mass balance in the Central Alps. Extreme climatic events induce different and even contrasting responses of tree-ring growth and glacier mass variations and may therefore bias tree-ring-based glacier mass balance reconstructions.  相似文献   
2.
ABSTRACT. Mountain landscapes show rapid evolution, especially at high altitudes, in response to current climate changes. In addition, the greater number of routes and trails made available and the increase in tourism have caused some impacts on mountain areas. Gradual soil erosion has been observed along some hiking trails, with the latter tending to deepen, and with stronger erosion where the trail cuts the slope. Where trails cross forested areas, trees can suffer root damage from foot trampling as roots become exposed. A dendrogeomorphological study was conducted on trees along two hiking trails in upper Valtellina (Italian Alps). On the first trail, in Valle dei Forni, European larches and stone pines, mostly with exposed roots, were sampled. A mean erosion rate of 2.7 mm/a, related to deepening of the footpath, was obtained, and various degrees of root growth disturbance along the trail were observed. In particular, the growth of many sampled roots shows an increase in ring width corresponding with the moment when root exposure occurred, followed, after 3–5 years, by rapid growth suppression. The exposure of many roots has taken place since the 1980s. No significant variations in stem growth were observed, even when there were exposed and damaged roots. Along the second trail, in Valle Alpisella, exposed roots of mountain pines were analysed. A mean erosion rate of 3.2–3.7 mm/a, related to the escarpments bordering the footpath, was obtained, while no significant changes were detected in root growth.  相似文献   
3.
4.
Complex landslides, capable of reactivation, are typical slope movements in high relief areas. Due to their distribution, size and kinematics, these landforms represent a major hazard, posing a high risk to populations, settlements and infrastructures. This paper integrates geomorphological analyses, instrumental measurements and dendrochronological approaches in assessing a large, reactivated landslide system on the southern piedmont of Monte Sirino (southern Italy). The landslide system is associated with weak geological structures, earthquake activity, and rapid recent incision of the mid-Pleistocene Noce lake deposits. Potential reactivation triggers include a higher regional annual rainfall, one of the highest in southern Italy, and more frequent heavy snowfalls in recent decades. Reactivation of the Sirino landslide system has important implications for the motorway connecting Salerno and Reggio Calabria, which crosses it. The results of our study show that the slide is reactivated with an almost decadal frequency and that major reactivations are correlated to prolonged snowfall, which occurs with increasing frequency in the southern Apennines. The last observation suggests the need for similar studies on the behaviour of other landslide systems in the southern Apennines, performing integrated approaches such as geotechnical and dendrogeomorphological analysis.  相似文献   
5.
Climate change and climate anomalies are inducing strong variations in the high‐mountain environment, driving the responses of physical and biological systems differently. This paper assesses tree‐ring growth responses to climate for two Norway spruce (Picea abies (L.) Karst.) sites at different altitudes from an Ortles‐Cevedale Group (OCG; internal zones of the Central Italian Alps) valley site and reports some examples of climate impact on glacier dynamics in the OCG in recent decades. Growth–climate relationships between tree‐ring chronologies and meteorological data were established by means of Pearson's correlation and response functions. In the high‐altitude chronology we found a strong signal of July temperatures, whereas the low‐altitude chronology also contained a signal of summer precipitation. Climate anomalies occurring in these months proved to influence tree growth at the two sites differently. In summer 2003 extreme climatic conditions established over Europe and the Alps, strongly affecting physical and biological systems. Spruce responses to the climate anomaly of 2003 were more evident with a one‐year lag. The high‐altitude site profited from the warmer growing season, whereas trees at the low‐altitude site experienced water stress conditions and their growth was strongly inhibited also in the following year. Glacier mass loss in the OCG in 2003 was the highest since yearly measurement started. The examples reported confirm the strong and even divergent variations affecting the Alpine environment, induced by recent climate change.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号