首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
自然地理   1篇
  2005年   1篇
  1997年   1篇
  1989年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (δ18O, δ13C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth.  相似文献   
2.
Flow parameters (velocity and density) for turbidity currents in the Northwest Atlantic Mid-Ocean Channel (NAMOC) have been determined based on two different approaches, channel geometry and grain-size distributions of turbidites. Channel geometry has been obtained by a quantitative morphological analysis of the NAMOC which shows three genetically different segments in the upper 2000 km: (1) an upper 350 km-long ‘equilibrium channel’, (2) a middle 700 km-long ‘modified equilibrium channel’and (3) a lower ‘basement-controlled channel’which is more than 1000 km-long. In contrast to other meandering submarine channels the NAMOC has very low sinuosities and gradients. A consistently higher right-hand levee limits mean flow velocities to 3ms?1 and channel geometry indicates mean flow velocities of 0·86 m s?1 that decrease within the equilibrium channel to 0·05 m s?1. Grain-size distributions on the levees and in the channel suggest strong vertical velocity and density gradients for bank-full flows with velocities of up to 8 m s?1 and excess densities up to 87 kg m?3 at the base, and 0·45 m s?1 and 4 kg m?3 at the top. The internal shear produced by these strong vertical gradients results in a decoupling of the current head and body. Channel geometry appears to be mainly the result of the slowly moving dilute body of the current.  相似文献   
3.
During the summer 1987 expedition of the polar research vessel'Polarstern'in the Eurasian Basin of the Arctic Ocean, sea ice at about 84-86°N and 20-30°E was found to have high concentrations of particulate material. The particle-laden ice occurred in patches which often darkened more than half the ice surface at our northernmost positions. Much of this ice appeared to be within the Siberian Branch of the Transpolar Drift stream, which transports deformed, multi-year ice from the Siberian shelves westward across the Eurasian Basin. Lithogenic sediment, which is the major component of the particulate material, may have been incorporated during ice formation on the shallow Siberian seas. Diatoms collected from the particle-rich ice surfaces support this conclusion, as assemblages were dominated by a marine benthic species similar to that reported from sea ice off the coast of northeast Siberia. Based on drift trajectories of buoys deployed on the ice it appears that much of the particle-laden ice exited the Arctic Ocean through the Fram Strait and joined the East Greenland Current.
Very different sea ice characteristics were found east of the Yermak Plateau and north of Svalbard and Frans Josef Land up to about 83-84°N. Here sea ice was thinner, less deformed, with lower amounts of lithogenic sediment and diatoms. The diatom assemblage was dominated by planktonic freshwater species. Trajectories of buoys deployed on sea ice in this region indicated a tendency for southward transport to the Yermak Plateau or into the Barents Sea.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号