首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   2篇
自然地理   3篇
  2021年   2篇
  2020年   2篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Iyanda  Ayodeji E.  Osayomi  Tolulope 《GeoJournal》2021,86(6):2787-2807
GeoJournal - To assess spatial heterogeneity in geographic data, geographically weighted regression (GWR) has been widely used. This study used an advanced version of GWR, multiscale geographically...  相似文献   
2.
Regionally extensive 3D seismic data from the Lower Congo Basin, offshore Angola, have been used to investigate the influence of salt‐related structures on the location, geometry and evolution of Miocene deep‐water depositional systems. Isochron variations and cross‐sectional lap‐out relationships have then been used to qualitatively reconstruct the syn‐depositional morphology of salt‐cored structures. Coherence and Red‐green‐blue‐blended spectral decomposition volumes, tied to cross‐sectional seismic facies, allow imaging of the main sediment transport pathways and the distribution of their component seismic facies. Major sediment transport pathways developed in an area of complex salt‐related structures comprising normal faults, isolated diapirs and elongate salt walls with intervening intraslope basins. Key structural controls on the location of the main sediment transport pathways and the local interaction between lobe‐channel‐levee systems and individual structures were the length and height of structures, the location and geometry of segment boundaries, the growth and linkage of individual structures, and the incidence angle between structural strike and flow direction. Where the regional flow direction was at a high angle to structural strike, transport pathways passed progressively through multiple intraslope basins in a fill and spill manner. Segment boundaries and structural lows between diapirs acted as spill points, focusing sediment transport between intraslope basins. Channel–lobe transitions are commonly associated with these spill points, where flows expanded and entered depocentres. Deflection of channel‐levee complexes around individual structures was mainly controlled by the length of structures and incidence angle. Where regional flow direction was at a low angle to structural strike, sediment transport pathways ran parallel to structure and were confined to individual intraslope basins for many tens of kilometres. Spill between intraslope basins was rare. The relative position of structures and their segment boundaries was fixed during the Miocene, which effectively pinned the locations where sediment spilled from one intraslope basin to the next. As a result, major sediment transport pathways were used repeatedly, giving rise to vertically stacked lobe‐channel‐levee complexes along the pathways. Shadow zones devoid of coarse clastics developed in areas that were either structurally isolated from the sediment transport pathways or bypassed as a result of channel diversion.  相似文献   
3.
In passive margin salt basins, the distinct kinematic domains of thin‐skinned extension, translation and contraction exert important controls on minibasin evolution. However, the relationship between various salt minibasin geometries and kinematic domain evolution is not clear. In this study, we use a semi‐regional 3D seismic reflection dataset from the Lower Congo Basin, offshore Angola, to investigate the evolution of a network of minibasins and intervening salt walls during thin‐skinned, gravity‐driven salt flow. Widespread thin‐skinned extension occurred during the Cenomanian to Coniacian, accommodated by numerous distributed normal faults that are typically 5–10 km long and spaced 1–4 km across strike within the supra‐salt cover. Subsequently, during the Santonian–Paleocene, multiple, 10–25 km long, 5–7 km wide depocentres progressively grew and linked along strike to form elongate minibasins separated by salt walls of comparable lengths. Simultaneous with the development of the minibasins, thin‐skinned contractional deformation occurred in the southwestern downslope part of the study area, forming folds and thrusts that are up to 20 km long and have a wavelength of 2–4 km. The elongate minibasins evolved into turtle structures during the Eocene to Oligocene. From the Miocene onwards, contraction of the supra‐salt cover caused squeezing and uplift of the salt walls, further confining the minibasin depocentres. We find kinematic domains of extension, translation and contraction control the minibasin initiation and subsequent evolution. However, we also observe variations in minibasin geometries associated with along‐strike growth and linkage of depocentres. Neighbouring minibasins may have different subsidence rates and maturity leading to marked variations in their geometry. Additionally, migration of the contractional domain upslope and multiple phases of thin‐skinned salt tectonics further complicates the spatial variations in minibasin geometry and evolution. This study suggests that minibasin growth is more variable and complex than existing domain‐controlled models would suggest.  相似文献   
4.
Acta Geochimica - In recent times, there had been reported cases of Pb poisoning in Anka gold mining area, Northwest Nigeria. Therefore, this study was carried out to determine the extent of...  相似文献   
5.
Salt tectonics is an important part of the geological evolution of many continental margins, yet the four-dimensional evolution of the minibasins, the fundamental building block of these and many other salt basins, remains poorly understood. Using high-quality 3D seismic data from the Lower Congo Basin, offshore Angola we document the long-term (>70 Myr) dynamics of minibasin subsidence. We show that, during the Albian, a broadly tabular layer of carbonate was deposited prior to substantial salt flow, diapirism, and minibasin formation. We identify four subsequent stages of salt-tectonics and related minibasin evolution: (i) thin-skinned extension (Cenomanian to Coniacian) driven by basinward tilting of the salt layer, resulting in the formation of low-displacement normal faults and related salt rollers. During this stage, local salt welding led to the along-strike migration of fault-bound depocentres; (ii) salt welding below the eastern part of the minibasin (Santonian to Paleocene), causing a westward shift in depocentre location; (iii) welding below the minibasin centre (Eocene to Oligocene), resulting in the formation of a turtle and an abrupt shift of depocentres towards the flanks of the bounding salt walls; and (iv) an eastward shift in depocentre location due to regional tilting, contraction, and diapir squeezing (Miocene to Holocene). Our study shows that salt welding and subsequent contraction are key controls on minibasin geometry, subsidence and stratigraphic patterns. In particular, we show how salt welding is a protracted process, spanning > 70 Myr of the salt-tectonic history of this, and likely other salt-rich basins. The progressive migration of minibasin depocentres, and the associated stratigraphic architecture, record weld dynamics. Our study has implications for the tectono-stratigraphic evolution of minibasins.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号