首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
自然地理   1篇
  2009年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The sidewall effects of a wind tunnel on aeolian sand transport were investigated experimentally. A wind tunnel was used to conduct the experiments with a given channel height of 120 cm and varying widths (B) of 40, 60, 80, 100 and 120 cm. Both vertical profiles of wind velocity and sand mass flux were measured at different locations across the test section. The results show that the wind velocity with saltation first increases and then decreases to a minimum, from the sidewall to the central line of the wind tunnel. The discrepancy among wind velocities at different locations of the transverse section decreases with decreasing tunnel width. The wind friction velocity across the wind tunnel floor, with the exception of the region closest to the sidewalls, does not deviate strongly in wide wind tunnels from that along the central line, whereas it does vary in narrow tunnels. The sand mass fluxes, with the exception of some near-bed regions, are larger along the central line of the wind tunnel than they are at the quarter width location from the sidewall. Unlikely previously reported results, the dimensionless sand transport rate, Qg / (ρu3) (where Q is the total sand transport rate, g is the gravitational acceleration constant, ρ is the air density, and u is the wind friction velocity), first decreases and then increases with the dimensionless friction velocity, u / ut (where ut is the threshold friction velocity). The above differences may be attributed to the sidewall effects of the wind tunnel. A dimensionless parameter, FB = u / (gB)1/2, is defined to reflect the sidewall effects on aeolian sand transport. The flows with FB of 0.33 or less may be free from the sidewall effects of the wind tunnel and can ensure accurate saltation tunnel simulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号