首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   11篇
  国内免费   17篇
测绘学   7篇
大气科学   25篇
地球物理   33篇
地质学   139篇
海洋学   6篇
天文学   19篇
综合类   7篇
自然地理   5篇
  2023年   7篇
  2022年   13篇
  2021年   14篇
  2020年   6篇
  2019年   9篇
  2018年   14篇
  2017年   18篇
  2016年   25篇
  2015年   13篇
  2014年   13篇
  2013年   24篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   12篇
  2008年   8篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1977年   1篇
  1975年   1篇
排序方式: 共有241条查询结果,搜索用时 205 毫秒
1.
2.
In this note we derive an exact solution of transfer equation in a plane-parallel semiinfinite atmosphere with albedo >1, by the method of Laplace transform and Wiener-Hopf technique. The emergent intensityI(0, ) is obtained in terms of theH 0-functionH 0() (Das Gupta, 1978) for which some good approximations are given. Intensity at any depth is also obtained.I(0, )/I(0, 0) is plotted in graphs against [0,1], and shows a maximum which drops and shifts towards the origin as increases.  相似文献   
3.
Indiscriminate cutting of hills in the Sylhet region has become a major environmental issue. The nature and life style of Sylhet intimately related with the hills are thus under the threat of a drastic imbalance in its ecosystem. Due to such hill cutting the mostly affected sectors of this region will be its weather and climate, geomorphology and hydrology, and the indigenous flora and fauna. As a result the frequency of natural calamities like earthquake, flash flooding etc may increase considerably. Deforestation and resulting increased soil erosion, decreased ground water recharge and deteriorated water quality might also be as consequences of such hill cutting. This paper investigates the cause and extent of the problem along with its probable impact and finally suggests actions for conservation of hills for ecological balance of the region.  相似文献   
4.
The Miocene-Pliocene Siwalik Group records changing fluvial environments in the Himalayan foreland basin. The Nagri and Dhok Pathan Formations of this Group in the eastern Potwar Plateau, northern Pakistan, comprise relatively thick (tens of metres) sandstone bodies and mudstones that contain thinner sandstone bodies (metres thick) and palaeosols. Thick sandstone bodies extend for kilometres normal to palaeoflow, and are composed of large-scale stratasets (storeys) stacked laterally and vertically adjacent to each other. Sandstone bodies represent single or superimposed braided-channel belts, and large-scale stratasets represent channel bars and fills. Channel belts had widths of km, bankfull discharges on the order of 103 cumecs and braiding parameter up to about 3. Individual channel segments had bankfull widths, maximum depths, and slopes on the order of 102 m, 101 m and 10?4 respectively, and sinuosities around 1-1. These rivers are comparable to many of those flowing over the megafans of the modern Indo-Gangetic basin, and a similar depositional setting is likely. Thin sandstone bodies within mudstone sequences extend laterally for on the order of 102 m and have lobe, wedge, sheet and channel-form geometries: they represent crevasse splays, levees and floodplain channels. Mudstones are relatively bioturbated/disrupted and represent mainly floodbasin and lacustrine deposition. Mudstones and sandstones are extremely disrupted in places, showing evidence of prolonged pedogenesis. These ‘mature’ palaeosols are m thick and extend laterally for km. Lateral and vertical variations in the nature of their horizons apparently depend mainly on deposition rate. The 500 m-thick Nagri Formation has a greater proportion and thicker sandstone bodies than the overlying 700 m-thick Dhok Pathan Formation. The thick sandstone bodies and their large-scale stratasets thicken and coarsen through the Nagri Formation, then thin and fine at the base of the Dhok Pathan Formation. Compacted deposition rates increase with sandstone proportion (0-53 mm/year for Nagri, 0-24 mm/year for Dhok Pathan), and palaeosols are not as well developed where deposition rates are high. Within both formations there are 100 m-scale variations (representing on the order of 105 years) in the proportion and thickness of thick sandstone bodies, and tens-of-m-scale alternations of thick sandstone bodies and mudstone-sandstone strata that represent on the order of 104 years. Formation-scale stratal variations extend across the Potwar Plateau for at least 100 km, although they may be diachronous: however, 100-m and smaller scale variations can only be traced laterally for up to tens of km. Alluvial architecture models indicate that increases in the proportion and thickness of thick sandstone bodies can be explained by increasing channel-belt sizes (mainly), average deposition rate and avulsion frequency on a megafan comparable in size to modern examples. 100-m-scale variations in thick sandstone-body proportion and thickness could result from ‘regional’ shifts in the position of major channels, possibly associated with ‘fan lobes’on a single megafan or with separate megafans. However, such variations could also be related to local changes in subsidence rate or changes in sediment supply to the megafan system. Formation-scale and 100-m-scale stratal variations are probably associated with interelated changes in tectonic uplift, sediment supply and basin subsidence. Increased rates of hinterland uplift, sediment supply and basin subsidence, recorded by the Nagri Formation, may have resulted in diversion of a relatively large river to the area. Alternatively, changing river sizes and sediment supply rates may be related to climate changes affecting the hinterland (possibly linked to tectonic uplift). Climate during deposition of the Siwalik Group was monsoonal. Although the deposits contain no direct evidence for climate change, independent evidence indicates global cooling throughout the Miocene, and the possibility of glacial periods (e.g. around 10-8 Ma, corresponding to base of Nagri Formation). If the higher Himalayas were periodically glaciated, a mechanism would exist for varying sediment supply to megafans on time scales of 104-105 years. Although eustatic sea-level changes are related to global climatic change, they are not directly related to Siwalik stratigraphic changes, because the shoreline was many 100 km away during the Miocene.  相似文献   
5.
The present work addresses the long-standing issues on the characterization aspect of the Proterozoic siliciclastic successions exposed in the central part of the Lesser Himalaya, restricted between the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT). Geologic, sedimentologic, and petrographic study divides the Lesser Himalaya in two zones- northern Palaeo- Mesoproterozoic Inner Lesser Himalayan (ILH) and southern Neoproterozoic Outer Lesser Himalayan (OLH) zones. The major lithofacies recognized from the zones are - (i) coarse grained siliciclastic (CGS), (ii) interbedded medium and fine-grained siliciclastic (IMFS), (iii) argillite (ARG), and (iv) siliciclastic–argillite rhythmites (SAR). Amongst all these facies, the nearshore IMFS facies shows consistent presence in both OLH and ILH zones. From the facies distribution pattern, a northwest–southeasterly trending palaeo- shoreline has been envisaged. The CGS facies in the ILH hints towards an alluvial fan setting during 1.8 Ga rifting phase associated with penecontemporaneous basic magmatism. Compositionally, the siliciclastics of both the zones (ILH and OLH) are arenite and wacke types with minimal variation in their detrital proportions, derived from the early Proterozoic (between 2.4-1.6Ga) Aravalli-Delhi Supergroup provenance. Nearly matching types and content of detrital modes and the lithofacies pattern of the ILH and OLH siliciclastics probably conclude the derivation from the rising (nearby) Aravalli-Delhi orogen and deposition in a foreland like situation.  相似文献   
6.
As a milestone of the entire energy industry, unconventional resources have inevitably swept the world in the last decade, and will certainly dominate the global oil and gas industry in the near future. Eventually, the “unconventional” will become “conventional”. Along with the rapid development, however, some issues have emerged, which are closely related to the viability of unconventional resources development. Under the current circumstances of low crude oil and gas price, coupled with the prominent environmental concerns, the arguments about the development and production of unconventional resources have been recently heated up. This work introduced the full-blown aspects of unconventional resources especially shale reservoirs, by discussing their concepts and definitions, reviewing the shale gas and shale oil development history and necessity, analyzing the shale plays’ geology and petroleum systems with respects to key hydrocarbon accumulation elements and mechanisms, and summarizing the technology resolution. This study also discussed the relevant key issues, including significant estimation uncertainty of technically recoverable resources, the equivocal understanding of complex geology preventing the production and technologies implementation optimization, the difficulties of experiences and technologies global expanding, and the corresponding risks and uncertainties. In addition, based on the latest production and exploration data, the future perspective of the unconventional resources was depicted from global unconventional resources assessments, technology development, and limitations constraining the development.  相似文献   
7.
Abstract

This research deals with the surface dynamics and key factors – hydrological regime, sediment load, and erodibility of floodplain facies – of frequent channel shifting, intensive meandering, and lateral instability of the Bhagirathi River in the western part of the Ganga-Brahmaputra Delta (GBD). At present, the floodplain of the Bhagirathi is categorized as a medium energy (specific stream power of 10–300 W m?2), non-cohesive floodplain, which exhibits a mixed-load and a meandering channel, an entrenchment ratio >2.2, width–depth ratio >12, sinuosity >1.4, and channel slope <0.02. In the study area, since 1975, four meander cutoffs have been shaped at an average rate of one in every 9–10 years. In the active meander belt and sand-silt dominated floodplains of GBD, frequent shifting of the channel and meander migration escalate severe bank erosion (e.g. 2.5 × 106 m3 of land lost between 1999 and 2004) throughout the year. Remote sensing based spatio-temporal analysis and stratigraphic analysis reveal that the impact of the Farakka barrage, completed in 1975, is not the sole factor of downstream channel oscillation; rather, hydrogeomorphic instability induced by the Ajay–Mayurakshi fluvial system and the erodibility of floodplain sediments control the channel dynamics of the study area.  相似文献   
8.
9.
A structural interpretation of the Ziarat block in the Balochistan region (a part of the Suleiman Fold and Thrust Belt) has been carried out using seismic and seismological data. Seismic data consists of nine 2.5D pre‐stack migrated seismic lines, whereas the seismological data covers the Fault Plane Solution and source parameters. Structural interpretation describes two broad fault sets of fore and back thrusts in the study area that have resulted in the development of pop‐up structures, accountable for the structural traps and seismicity pattern in terms of seismic hazard. Seismic interpretation includes time and depth contour maps of the Dungan Formation and Ranikot group, while seismological interpretation includes Fault Plane Solution, that is correlated with a geological and structural map of the area for the interpretation of the nature of the subsurface faults. Principal stresses are also estimated for the Ranikot group and Dungan Formation. In order to calculate anisotropic elastic properties, the parameters of the rock strength of the formations are first determined from seismic data, along with the dominant stresses (vertical, minimum horizontal, and maximum horizontal). The differential ratio of the maximum and minimum horizontal stresses is obtained to indicate optimal zones for hydraulic fracturing, and to assess the potential for geothermal energy reservoir prospect generation. The stress maps indicate high values towards the deeper part of the horizon, and low towards the shallower part, attributed to the lithological and structural variation in the area. Outcomes of structural interpretation indicate a good correlation of structure and tectonics from both seismological and seismic methods.  相似文献   
10.
Participation of local people during any disaster is enormous. They possess better knowledge and information about their own community than anyone else from the outside. This study proposes Participatory Vulnerability Reduction (PVR), a community-based approach for disaster management. The concept of PVR was applied to an urban community of Dhaka city (Ward no. 06 of Dhaka North City Corporation) which has been identified by the Comprehensive Disaster Management Programme as one of the most vulnerable areas of the city for earthquake. PVR consists three steps, and in each step, different participatory urban appraisal tools were used. In the first step, the community people assessed the earthquake vulnerability. It was found that some certain parts of the study area are highly vulnerable due to lack of accessibility to the critical facilities, inadequacy of open space, poor construction practice and unsuitable soil condition for building construction. This was followed by analyzing the root causes and effects of these problems. Structural fragility of the buildings, construction of settlements by filling the low-lying areas and development of slums beside taller buildings are the three major causes behind the above vulnerable issues. In the second step, capacity of the community was assessed in terms of resources and their organizational structure. In the final step, local people developed the strategies to overcome the vulnerability and a community-based organizational set up was proposed to coordinate the collective actions. Although developed in local context, application of PVR is not limited for earthquake and it can be replicated for other communities as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号