首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
大气科学   1篇
海洋学   1篇
综合类   4篇
自然地理   1篇
  2021年   1篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
The major source of reduced sulfur in the remote marine atmosphere is the biogenic compound dimethylsulfide (DMS), which is ubiquitous in the world's oceans and released through food web interactions. Relevant fluxes and concentrations of DMS, its phytoplankton-produced precursor, dimethylsulfoniopropionate (DMSP) and related parameters were measured during an intensive Lagrangian field study in two mesoscale eddies in the Sargasso Sea during July–August 2004, a period characterized by high mixed-layer DMS and low chlorophyll—the so-called ‘DMS summer paradox’. We used a 1-D vertically variable DMS production model forced with output from a 1-D vertical mixing model to evaluate the extent to which the simulated vertical structure in DMS and DMSP was consistent with changes expected from field-determined rate measurements of individual processes, such as photolysis, microbial DMS and dissolved DMSP turnover, and air–sea gas exchange. Model numerical experiments and related parametric sensitivity analyses suggested that the vertical structure of the DMS profile in the upper 60 m was determined mainly by the interplay of the two depth-variable processes—vertical mixing and photolysis—and less by biological consumption of DMS. A key finding from the model calibration was the need to increase the DMS(P) algal exudation rate constant, which includes the effects of cell rupture due to grazing and cell lysis, to significantly higher values than previously used in other regions. This was consistent with the small algal cell size and therefore high surface area-to-volume ratio of the dominant DMSP-producing group—the picoeukaryotes.  相似文献   
3.
Dimethylsulphide (DMS) has been implicated in climate change as a possible negative feedback to global warming, and several Models have been developed that simulate the production of DMS in the marine environment. The focus of this study is to improve the nitrogen based Gabric Model, using field data collected during the Southern Hemisphere First Marine Aerosol Characterisation Experiment (ACE-1) in the Southern Ocean in 1995. Two Model Runs (Series A and B) were carried out with six simulations of varying biotic and abiotic inputs applied over the voyage transect (41-48°S), reflecting Model default values or field values from the experiment. The abiotic inputs were time-step, dissolved dimethylsulphoniopropionate (DMSP) and DMS, and the biotic nitrogen inputs were from phytoplankton, bacteria, zooflagellates, large protozoa, micro and mesozooplankton. The focus of the abiotic assessment was nutrient (nitrate) uptake and dissolved DMSP and DMS output. Model output of the biotic compartments was assessed for congruence with predicted ecological patterns of succession.

Despite a limited data set the study provides a good insight into the utility of the Model, which functioned as a heuristic rather than predictive tool. In simulation 1 (Series A) where the only field value was nitrate, all latitudes from 41-48°S concurred with the ecological succession predicted by the Model authors and the successional pattern predicted by other researchers, with a double phytoplankton peak indicating remineralisation of nitrogen via the microbial loop. In many simulations the Model produced lower values of dissolved DMS than were measured, and production of DMS in the Model appears constrained. However, in simulation 5 (Series A) DMS model outputs were closest to the mean dissolved DMS levels reported on RV Discoverer. In this simulation, field values were used for phytoplankton, nitrate, dissolved DMSP and DMS, with bacterial abundance and micro and mesozooplankton increased over their Gabric default values. Also, the phytoplankton double peak occurred earlier, as did the peaks in bacteria, zooflagellates, and large protozoa. Simulations that deviated more significantly from the predicted successional patterns were characterised by single peaks in phytoplankton growth and delayed bacterial growth. Series C simulations at latitude 43°S, in an attempt to reduce phytoplankton predation by bacteria, increased DMS output reasonably successfully. However, significant recalibration of the Model is recommended in conjunction with field studies to gather vital background biological data - particularly in the areas of nutrient limitation, phytoplankton speciation, and the cellular content of the DMS precursor compound, DMSP.  相似文献   
4.
主要利用卫星数据MODIS Aqua研究在北极格陵兰海(10°W-10°E,70°N-85°N)2003-2009年间叶绿素a(Chl a)与气溶胶厚度(AOD)的分布以及它们之间的耦合关系.研究发现,Chl a和AOD在一定的区域里有着带有滞后期的耦合关系.同时通过统计软件EVieWS的滞后回归分析发现,Chl a滞...  相似文献   
5.
The distributions and correlations of chlorophyll-a(Chl-a),aerosol optical depth(AOD)and ice cover in the southeast Arctic Ocean-Greenland Sea(10°W–10°E,70°–80°N)between 2003 and 2009 were studied using satellite data and statistical analyses.Regression analysis showed correlations between Chl-a and AOD,Chl-a and ice cover,and AOD and ice cover with different time lags.The time lag of Chl-a and AOD indicated their long-term equilibrium relationship.Peaks in AOD and Chl-a and generally occurred in May and July,respectively.Despite the time lag,the correlation between Chl-a and AOD in the study region was as high as 0.7.The peak gap between Chl-a and AOD shifted for about 6 weeks during 2003–2009.In the summer and autumn of 2009,Chl-a and AOD levels were much higher than during the other years,especially in the northern band of the study region(75°–80°N).The driving forces for this localized increase in phytoplankton biomass could be mainly attributed to the very high rate of ice melting in spring and early summer and the high wind speed in autumn,together with the increased deposition of aerosol throughout the year.The unusually high AOD in the spring of 2003 was mainly due to a massive fi re in Russia,which occurred in the fi rst half of the year.Over the 7 years of the study,the sea surface temperature generally decreased.This may have been due to the release of dimethylsulfi de into the air,excreted in large amounts from abundant phytoplankton biomass,and its subsequent reaction,form large amounts of aerosol,and resulting in regional cooling.  相似文献   
6.
Marine biogenic emission of dimethylsulfide(DMS) has been well recognized as the main natural source of reduced sulfur to the remote marine atmosphere and has the potential to affect climate,especially in the polar regions.We used a global climate model(GCM) to investigate the impact on atmospheric chemistry from a change to the contemporary DMS flux to that which has been projected for the late 21~(st) century.The perturbed simulation corresponded to conditions that pertained to a tripling of equivalent CO_2, which was estimated to occur by year 2090 based on current worst-case greenhouse gas emission scenarios.The changes in zonal mean DMS flux were applied to 50°S-70°′S Antarctic(ANT) and65°N-80°N Arctic(ARC) regions.The re sults indic ate that the re are clearly diffe rent impacts after perturb ation in the southern and northern polar regions.Most quantities related to the sulfur cycle show a higher increase in ANT.However,mo st sulfur compounds have higher peaks in ARC.The perturbation in DMS flux leads to an increase of atmo spheric DMS of about 45% m ANT and 33.6% in ARC.The sulfur dioxide(S02) vertical integral increases around 4 3 % in ANT and 7.5% in ARC.Sulfate(S04) vertical integral increases by 17% in ANT and increases around 6% in ARC.Sulfur emissions increases by 21% in ANT and increases by 9.7%in ARC.However,oxidation of DMS by OH increases by 38.2% in ARC and by 15.17% in ANT.Aerosol optical depth(AOD) increases by 4% in the ARC and by 17.5% in the ANT,and increases by 22.8% in austral summer.The importance of the perturbation of the biogenic source to future aerosol burden in polar regions leads to a cooling in surface temperature of 1 K in the ANT and 0.8 K in the ARC.Generally,polar regions in the Antarctic Ocean will have a higher offsetting effect on warming after DMS flux perturbation.  相似文献   
7.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radiative energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号