首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  国内免费   1篇
大气科学   4篇
地球物理   12篇
地质学   14篇
天文学   5篇
  2018年   1篇
  2013年   2篇
  2012年   2篇
  2009年   7篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2002年   3篇
  1997年   1篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Observations of the vertical profile of hydrogen fluoride (HF) vapor in the stratosphere and of the vertical column amounts of HF above certain altitudes were made using a variety of spectroscopic instruments in the 1982 and 1983 Balloon Intercomparison Campaigns. Both emission instruments working in the far infrared spectral region and absorption instruments using solar occultation in the 2.5m region were employed. No systematic differences were seen in results from the two spectral regions. A mean profile from 20–45 km is presented, with uncertainties ranging from 20% to 50%. Total columns measured from ground and from 12 km are consistent with the profile if the mixing ratio for HF is small in the tropophere and low stratosphere.  相似文献   
2.
The Balloon Intercomparison Campaign (BIC) was set up to intercompare remote sensing measurements of a number of compounds other than water vapor; however, water vapor has strong absorption features throughout the infrared and mm wave regions of the spectrum. Therefore many of the investigators involved in BIC have absorption or emission features due to water vapor in the data they obtained during the balloon flights made under the campaign. These features have been used by the investigators to determine the stratospheric water vapor profiles which are compared in this paper. The profiles allow comparison of a wide range of remote sensing techniques involving both emission and absorption in the mid-infrared and emission techniques in the far infrared.  相似文献   
3.
Compositional Zoning of the Bishop Tuff   总被引:14,自引:0,他引:14  
Compositional data for >400 pumice clasts, organized accordingto eruptive sequence, crystal content, and texture, providenew perspectives on eruption and pre-eruptive evolution of the>600 km3 of zoned rhyolitic magma ejected as the Bishop Tuffduring formation of Long Valley caldera. Proportions and compositionsof different pumice types are given for each ignimbrite packageand for the intercalated plinian pumice-fall layers that eruptedsynchronously. Although withdrawal of the zoned magma was lesssystematic than previously realized, the overall sequence displaystrends toward greater proportions of less evolved pumice, morecrystals (0·5–24 wt %), and higher FeTi-oxide temperatures(714–818°C). No significant hiatus took place duringthe 6 day eruption of the Bishop Tuff, nearly all of which issuedfrom an integrated, zoned, unitary reservoir. Shortly beforeeruption, however, the zoned melt-dominant portion of the chamberwas invaded by batches of disparate lower-silica rhyolite magma,poorer in crystals than most of the resident magma but slightlyhotter and richer in Ba, Sr, and Ti. Interaction with residentmagma at the deepest levels tapped promoted growth of Ti-richrims on quartz, Ba-rich rims on sanidine, and entrapment ofnear-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber,led to the dark gray and swirly crystal-poor pumices sparselypresent in all ash-flow packages. As shown by FeTi-oxide geothermometry,the zoned rhyolitic chamber was hottest where crystal-richest,rendering any model of solidification fronts at the walls orroof unlikely. The main compositional gradient (75–195ppm Rb; 0·8–2·2 ppm Ta; 71–154 ppmZr; 0·40–1·73% FeO*) existed in the melt,prior to crystallization of the phenocryst suite observed, whichincluded zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned,generally reflect magma temperature and the bulk compositionalgradient, implying both that few crystals settled or were transportedfar and that the observed crystals contributed little to establishingthat gradient. Upward increases in aqueous gas and dissolvedwater, combined with the adiabatic gradient (for the 5 km depthrange tapped) and the roofward decline in liquidus temperatureof the zoned melt, prevented significant crystallization againstthe roof, consistent with dominance of crystal-poor magma earlyin the eruption and lack of any roof-rind fragments among theBishop ejecta, before or after onset of caldera collapse. Amodel of secular incremental zoning is advanced wherein numerousbatches of crystal-poor melt were released from a mush zone(many kilometers thick) that floored the accumulating rhyoliticmelt-rich body. Each batch rose to its own appropriate levelin the melt-buoyancy gradient, which was self-sustaining againstwholesale convective re-homogenization, while the thick mushzone below buffered it against disruption by the deeper (non-rhyolitic)recharge that augmented the mush zone and thermally sustainedthe whole magma chamber. Crystal–melt fractionation wasthe dominant zoning process, but it took place not principallyin the shallow melt-rich body but mostly in the pluton-scalemush zone before and during batchwise melt extraction. KEY WORDS: Bishop Tuff; ignimbrite; magma zonation; mush model; rhyolite  相似文献   
4.
We have detected asymmetry in the symbiotic star CH Cyg through the measurement of precision closure phase with the Integrated Optics Near-Infrared Camera (IONIC) beam combiner, at the infrared optical telescope array interferometer. The position of the asymmetry changes with time and is correlated with the phase of the 2.1-year period found in the radial velocity measurements for this star. We can model the time-dependent asymmetry either as the orbit of a low-mass companion around the M giant or as an asymmetric, 20 per cent change in brightness across the M giant. We do not detect a change in the size of the star during a 3-year monitoring period neither with respect to time nor with respect to wavelength. We find a spherical dust shell with an emission size of 2.2 ± 0.1 D * full width at half-maximum around the M giant star. The star to dust flux ratio is estimated to be 11.63 ± 0.3. While the most likely explanation for the 20 per cent change in brightness is non-radial pulsation, we argue that a low-mass companion in close orbit could be the physical cause of the pulsation. The combined effect of pulsation and low-mass companion could explain the behaviour revealed by the radial velocity curves and the time-dependent asymmetry detected in the closure-phase data. If CH Cyg is a typical long secondary period variable then these variations could be explained by the effect of an orbiting low-mass companion on the primary star.  相似文献   
5.
The Super-Earth Explorer is an Off-Axis Space Telescope (SEE-COAST) designed for high contrast imaging. Its scientific objective is to make the physico-chemical characterization of exoplanets possibly down to 2 Earth radii. For that purpose it will analyze the spectral and polarimetric properties of the parent starlight reflected by the planets, in the wavelength range 400–1,250 nm.  相似文献   
6.
Kaguyak Caldera lies in a remote corner of Katmai National Park, 375 km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ± 0.2 ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61–67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80 km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5–64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53–74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60 ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200 years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62–65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.  相似文献   
7.
We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 yr period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data show that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis   a = 7.58 ± 0.24 mas  , an axis ratio   r = 0.39 ± 0.03  and a position angle  θ= 35°± 2°  .  相似文献   
8.
 The postglacial eruption rate for the Mount Adams volcanic field is ∼0.1 km3/k.y., four to seven times smaller than the average rate for the past 520 k.y. Ten vents have been active since the last main deglaciation ∼15 ka. Seven high flank vents (at 2100–2600 m) and the central summit vent of the 3742-m stratocone produced varied andesites, and two peripheral vents (at 2100 and 1200 m) produced mildly alkalic basalt. Eruptive ages of most of these units are bracketed with respect to regional tephra layers from Mount Mazama and Mount St. Helens. The basaltic lavas and scoria cones north and south of Mount Adams and a 13-km-long andesitic lava flow on its east flank are of early postglacial age. The three most extensive andesitic lava-flow complexes were emplaced in the mid-Holocene (7–4 ka). Ages of three smaller Holocene andesite units are less well constrained. A phreatomagmatic ejecta cone and associated andesite lavas that together cap the summit may be of latest Pleistocene age, but a thin layer of mid-Holocene tephra appears to have erupted there as well. An alpine-meadow section on the southeast flank contains 24 locally derived Holocene andesitic ash layers intercalated with several silicic tephras from Mazama and St. Helens. Microprobe analyses of phenocrysts from the ash layers and postglacial lavas suggest a few correlations and refine some age constraints. Approximately 6 ka, a 0.07-km3 debris avalanche from the southwest face of Mount Adams generated a clay-rich debris flow that devastated >30 km2 south of the volcano. A gravitationally metastable 2-to 3-km3 reservoir of hydrothermally altered fragmental andesite remains on the ice-capped summit and, towering 3 km above the surrounding lowlands, represents a greater hazard than an eruptive recurrence in the style of the last 15 k.y. Received: 24 June 1996 / Accepted: 6 December 1996  相似文献   
9.
Geology of the peralkaline volcano at Pantelleria,Strait of Sicily   总被引:1,自引:1,他引:1  
Situated in a submerged continental rift, Pantelleria is a volcanic island with a subaerial eruptive history longer than 300 Ka. Its eruptive behavior, edifice morphologies, and complex, multiunit geologic history are representative of strongly peralkaline centers. It is dominated by the 6-km-wide Cinque Denti caldera, which formed ca. 45 Ka ago during eruption of the Green Tuff, a strongly rheomorphic unit zoned from pantellerite to trachyte and consisting of falls, surges, and pyroclastic flows. Soon after collapse, trachyte lava flows from an intracaldera central vent built a broad cone that compensated isostatically for the volume of the caldera and nearly filled it. Progressive chemical evolution of the chamber between 45 and 18 Ka ago is recorded in the increasing peralkalinity of the youngest lava of the intracaldera trachyte cone and the few lavas erupted northwest of the caldera. Beginning about 18 Ka ago, inflation of the chamber opened old ring fractures and new radial fractures, along which recently differentiated pantellerite constructed more than 25 pumice cones and shields. Continued uplift raised the northwest half of the intracaldera trachyte cone 275 m, creating the island's present summit, Montagna Grande, by trapdoor uplift. Pantellerite erupted along the trapdoor faults and their hingeline, forming numerous pumice cones and agglutinate sheets as well as five lava domes. Degassing and drawdown of the upper pantelleritic part of a compositionally and thermally stratified magma chamber during this 18-3-Ka episode led to entrainment of subjacent, crystal-rich, pantelleritic trachyte magma as crenulate inclusions. Progressive mixing between host and inclusions resulted in a secular decrease in the degree of evolution of the 0.82 km3 of magma erupted during the episode.The 45-Ka-old caldera is nested within the La Vecchia caldera, which is thought to have formed around 114 Ka ago. This older caldera was filled by three widespread welded units erupted 106, 94, and 79 Ka ago. Reactivation of the ring fracture ca. 67 Ka ago is indicated by venting of a large pantellerite centero and a chain of small shields along the ring fault. For each of the two nested calderas, the onset of postcaldera ring-fracture volcanism coincides with a low stand of sea level.Rates of chemical regeneration within the chamber are rapid, the 3% crystallization/Ka of the post-Green Tuff period being typical. Highly evolved pantellerites are rare, however, because intervals between major eruptions (averaging 13–6 Ka during the last 190 Ka) are short. Benmoreites and mugearites are entirely lacking. Fe-Ti-rich alkalic basalts have erupted peripherally along NW-trending lineaments parallel to the enclosing rift but not within the nested calderas, suggesting that felsic magma persists beneath them. The most recent basaltic eruption (in 1891) took place 4 km northwest of Pantelleria, manifesting the long-term northwestward migration of the volcanic focus. These strongly differentiated basalts reflect low-pressure fractional crystallization of partial melts of garnet peridotite that coalesce in small magma reservoirs replenished only infrequently in this continental rift environment.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号