首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
测绘学   2篇
地球物理   15篇
地质学   7篇
海洋学   5篇
天文学   27篇
自然地理   2篇
  2021年   1篇
  2017年   3篇
  2016年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1989年   1篇
  1987年   1篇
  1985年   4篇
  1983年   4篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1965年   1篇
  1963年   2篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
The dust coma of Comet P/Churyumov-Gerasimenko was monitored in the infrared (1–20 μm) from September 1982 to March 1983. Maximum dust production rate of ~2 × 105 g/sec occured in December, 1 month postperihelion. The ratio of dust/gas production was higher than that in other short-period comets. No silicate feature was visible in the 8- to 13-μm spectrum on 23 October. The mean geometric albedo of the grains was ~0.04 at 1.25 μm and ~0.05 at 2.2 μm.  相似文献   
2.
Dolos concrete units have been used extensively throughout the world for the protection of shorelines and rubble structures. A three-dimensional finite element model is used to determine the states of dynamic stress in dolosse with varying dimensions and concrete properties. An analytical procedure is developed which accurately predicts the tensile stress in the shank and horizontal fluke of dolosse subject to drop test loading conditions Numerical examples are presented which illustrate the application of prediction and iso-stress equations.  相似文献   
3.
We report 10 micrometers infrared photometry for 22 Aten, Apollo, and Amor asteroids. Thermal models are used to derive the corresponding radiometric albedos and diameters. Several of these asteroids appear to have surfaces of relatively high thermal inertia due to the exposure of bare rock or a coarse regolith. The Apollo asteroid 3103, 1982 BB, is recognized as class E. The Jupiter-crossing Amor asteroid 3552, 1983 SA, is confirmed as class D, but low albedos remain rare for near-Earth asteroids.  相似文献   
4.
A recently published model of the Near Earth Object (NEO) orbital-magnitude distribution (Bottke et al., 2002, Icarus156, 399-433.) relies on five intermediate sources for the NEO population: the ν6 resonance, the 3:1 resonance, the outer portion of the main belt (i.e., 2.8-3.5 AU), the Mars-crossing population adjacent to the main belt, and the Jupiter family comet population. The model establishes the relative contribution of these sources to the NEO population. By computing the albedo distribution of the bodies in and/or near each of the five sources, we can deduce the albedo distribution of the NEO population as a function of semimajor axis, eccentricity, and inclination. A problem with this strategy, however, is that we do not know a priori the albedo distribution of main belt asteroids over the same size range as observed NEOs (diameter D<10 km). To overcome this problem, we determined the albedo distribution of large asteroids in and/or near each NEO source region and used these results to deduce the albedo distribution of smaller asteroids in the same regions. This method requires that we make some assumptions about the absolute magnitude distributions of both asteroid families and background asteroids. Our solution was to extrapolate the observed absolute magnitude distributions of the families up to some threshold value Hthr, beyond which we assumed that the families' absolute magnitude distributions were background-like.We found that Hthr=14.5 provides the best match to the color vs heliocentric distance distribution observed by the Sloan Digital Sky Survey. With this value of Hthr our model predicts that the debiased ratio between dark and bright (albedo smaller or larger than 0.089) objects in any absolute-magnitude-limited sample of the NEO population is 0.25±0.02. Once the observational biases are properly taken into account, this agrees very well with the observed C/S ratio (0.165 for H<20). The dark/bright ratio of NEOs increases to 0.87±0.05 if a size-limited sample is considered. We estimate that the total number of NEOs larger than a kilometer is 855±110, which, compared to the total number of NEOs with H<18 (963±120), shows that the usually assumed conversion H=18?D=1 km slightly overestimates the number of kilometer-size objects.Combining our orbital distribution model with the new albedo distribution model, and assuming that the density of bright and dark bodies is 2.7 and 1.3 g/cm3, respectively, we estimate that the Earth should undergo a 1000 megaton collision every 63,000±8000 years. On average, the bodies capable of producing 1000 megaton of impact energy are those with H<20.6. The NEOs discovered so far carry only 18±2% of this collision probability.  相似文献   
5.
Mombacho is a deeply dissected volcano belonging to the Quaternary volcanic chain of Nicaragua. The southern, historic collapse crater (El Crater) currently hosts a fumarolic field with a maximum temperature of 121°C. Chemical and isotopic data from five gas-sampling field campaigns carried out in 2002, 2003 and 2005 highlight the presence of high-temperature gas components (e.g. SO2, HCl and HF), which indicate a significant contribution of juvenile magmatic fluids to the hydrothermal system feeding the gas discharges. This is strongly supported by the mantle-derived helium and carbon isotopic signatures, although the latter is partly masked by either a sedimentary subduction-related or a shallow carbonate component. The observed chemical and isotopic composition of the Mombacho fluids seems to indicate that this volcanic system, although it has not experienced eruptive events during the last centuries, can be considered active and possibly dangerous, in agreement with the geophysical data recorded in the region. Systematic geochemical monitoring of the fumarolic gas discharges, coupled with a seismic and ground deformation network, is highly recommended in order to monitor a possible new eruptive phase.  相似文献   
6.
7.
We present a thermal mid-infrared lightcurve of Asteroid 4 Vesta and use this to infer variations in thermophysical properties over the surface. Vesta was observed over three nights during the May 2007 opposition with the Infrared Telescope Facility on Mauna Kea. Mid-infrared observations are compared to a model based on the Standard Thermal Model which is draped over a Vesta shape model derived from Hubble Space Telescope observations.A visible lightcurve with similar aspect was used to estimate the albedo as Vesta rotates. Shape and albedo can explain some of the features observed in the mid-infrared lightcurve. However, variations in the thermophysical properties, such as the “beaming parameter,” over Vesta’s surface are required to completely explain the observations.In order to match the mid-infrared magnitudes observed of Vesta, a beaming parameter of ∼0.862 is required which is higher than other Main Belt Asteroids such as Ceres and Pallas (0.756), indicating a smoother and/or rockier surface on Vesta. Variations in the beaming parameter with longitude are invoked to reproduce the observed thermal variations. Surface materials with relatively high beaming values, indicating a smoother and/or rockier surface, in the eastern hemisphere of Vesta coincide with locations where impact excavations may have produced surfaces that are younger and brighter relative to the western hemisphere.  相似文献   
8.
9.
10.
Nineteen new lightcurves of 16 Psyche are presented along with a pole orientation derived using two independent methods, namely, photometric astrometry (PA) and magnitude-amplitude-shape-aspect (MASA). The pole orientations found using these two methods agree to within 4°. The results from applying photometric astrometry were prograde rotation, a sidereal period of 0ddot1748143 ± 0ddot0000003, and a pole at longitude 223° and latitude +37°, with an uncertainty of 10°; and, from applying magnitude-amplitude-shape-aspect a pole at 220 ± 1°, +40 ± 4°, and a modeled triaxial ellipsoid shape (a > b > c) with a/b = 1.33 ± 0.02 and b/c = 1.33 ± 0.07. The discrepancy between the high pole latitude found here and the low latitudes reported by others is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号