首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
天文学   15篇
  1998年   1篇
  1995年   2篇
  1993年   1篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
2.
Mouradian  Z.  Soru-Escaut  I.  Hiei  E.  McALLISTER  A. H.  Shibasaki  K.  Ohyama  M.  Khan  J. I.  Uchida  Y. 《Solar physics》1998,180(1-2):313-329
The 7 May 1992 filament disappearance in the low corona is analyzed. The cool and hot components of this event are studied, using H, soft X-ray and radio data. We first show the general effect of the disparition brusque (DB) on the life of the filament, which was a quiescent filament in the vicinity of an active region, and then give the history of the development of the 7 May event. The main stages of the event are: (i) the formation of hot arches spanning the cool filament; (ii) rise of the filament, with plasma ejection into the corona, in which we note some spreading of loops from the main body, with two distinct rising velocity phases of the H filament; (iii) formation of X-ray arches below the filament, the foot points of the arcades being two-ribbon H flare patches. The dynamics of H and X-rays features are given.  相似文献   
3.
In this paper we study some absorbing features seldom associated with flare occurrence and observed in the wings of H by means of a cinematographic patrol.We describe short lived chromospheric dark features with strong velocity fields and we show their correlation with the birth and the further development of an active center.It is shown that radial velocities precede the modifications of magnetic fields.An attempt to compare these chromospheric velocities and photospheric ones points out that it could be possible to find good correlation between them in a changing but not flaring region.  相似文献   
4.
We analyze the phenomenon of sudden disappearance (DB) of quiescent filaments and prominences, with examples of the two classes (dynamic and thermal DB) observed on the solar disk and at the limb. The differences between their dynamics are discussed, and it is shown that only dynamic DBs are associated with coronal mass ejections (CME), whereas thermal DBs are only local disturbances of the lower corona. We finish with a discussion of DBs detected on the disk and limb, to explain the statistical differences between the disappearance of filaments and the production of CME.  相似文献   
5.
We study the active region NOAA 6718 and the development of a (2N, M3.6) flare in radio and H. Due to our knowledge of the magnetic field structure in the active region we are able to associate the different radio flare burst components with the stages in the H flare evolution. A discussion of the data in terms of chromospheric flare kernel heating reveals that in the present case the observed flare-related radio burst continuum switch-off is caused by the penetration of hot, ablated gas into the coronal radio source.  相似文献   
6.
We have examined seven active regions of the Skylab period in the EUV (Harvard College Observatory), and in H and K3 (Observatoire de Meudon, spectroheliograms and patrols) in order to elucidate the magnetic geometry in the coronal environment of filaments. We have also looked for signatures of magnetic reconfigurations associated with instabilities (i.e. velocities or disappearances) of filaments. Out of sixteen H filaments observed, six were stable (lifetime 48h). All the filaments lay within coronal cavities as seen in lines formed above 1.5 × 106 K (Mgx 625, Sixii 521, Fexvi 417, Fexv 361). None of the stable filaments had arcades or arches spanning the cavities except (sometimes) at the ends of the filaments. On the other hand, most (8/10) of the unstable filaments (having concurrent Doppler shifts or a subsequent DB within 24h) had arcades or single arches spanning their cavities. The arches were observed in EUV lines with formation temperatures as low as 2–4 × 105 K (Oiv 554, Ovi 1032, Ne vii 465), as well as in hotter lines. A statistical test shows that the arcade/instability vs non-arcade/stability association is significant at the 99% confidence level. We suggest 2 types of scenario relating arcades to instabilities. The more preferable scenario is closely related to the Kuperus/Van Tend model of filament disruptions.  相似文献   
7.
Kane  S. R.  Kreplin  R. W.  Martres  M. -J.  Pick  M.  Soru-Escaut  I. 《Solar physics》1974,38(2):483-497
The relationship between H absorption features, type III radio bursts and soft X-ray emission has been examined in order to determine the characteristics of the particle acceleration process operating when a H-flare may not be detectable. It is found that transient H activity observed in the absence of reported flares is associated with production of relatively weak type III radio and soft X-ray emission. Since such optical phenomena are much more frequent than flares themselves, it is concluded that instabilities generating fast particles may be produced in the corona in a quasi-continuous way with coincident perturbations in the lower solar atmosphere.The soft X-ray component, which is similar to the precursor in flares, is not necessarily the direct product of fast particles, but is probably associated with some type of heating since both the soft X-ray emission and the H features exhibit a similar evolution, the type III bursts occurring near the maximum of this perturbation. The observations are consistent with a model in which the electron acceleration region is located at an altitude where the ion density is 109 cm–3 and most of the accelerated electrons( 20 keV) are confined to coronal altitudes where the ion density is 1010 cm–3.  相似文献   
8.
Observational studies before and during the flare start were made in Hα (3-λ heliograph at Meudon Observatory) on a large sample of ‘elementary’ flares, both on the disk and along the limb of the Sun. The concept of elementary eruptive phenomenon (EEP) is proposed to describe these observational data. The EEP may be considered as the basic element of complex flares which, then, are built up by the juxtaposition of several EEP. In the inferred scenario, the chromospheric eruptive phenomenon consists of two systems of loops: one cold - the surging arch -T~- 104 K, the other hot - the flaring arch -, covering a temperature range up to 107 K. The footpoints of the two systems remain differentiated until extinction of the phenomenon; their behaviour over time differs also. The surging arch (the magnetic flux emergence) rises first progressively in the solar atmosphere and the upper part of the loop is heated to coronal temperatures. The classical surge which is observed in the center of the Hα line, after the flash phase of the flare, is only the late development of the surging arch. The flaring arch originates from a pre-existing low loop, which is also able to rise in the solar atmosphere. These two systems coexist and may combine to form such physical characteristics as mass motion, expansion and post-flash phase.  相似文献   
9.
We studied the productivity of flares and subflares, for the period 1964 to 1993, according to the Monthly Mean Sunspot Numbers. The results show that major flares exhibit a cycle of eleven years, while subflares follow an 80-year cycle.  相似文献   
10.
Regions of rigid rotation, or Pivot Points, can be seen in the deviations from the classical law of solar differential rotation. These Pivot Points set up a local dynamo that is reflected in the emergence of the magnetic flux of the Active Centers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号