首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
地球物理   2篇
天文学   25篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2000年   1篇
  1998年   1篇
  1985年   1篇
  1983年   1篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有27条查询结果,搜索用时 20 毫秒
1.
David R. Soderblom 《Icarus》1985,61(2):343-345
Knowledge of a star's rotation period and ν sin i can be used to select stars that are seen pole-on, and thus are well suited to planetary searches by astrometric or direct-imaging means. A table of such stars is presented. This method is not suitable for discriminating equator-on systems and so cannot be used to select candidates for the photometric method of W. J. Borucki and A. L. Summers (1984, Icarus58, 121–134).  相似文献   
2.
Two classes of volcanic plumes on Io   总被引:1,自引:0,他引:1  
Comparison of Voyager 1 and Voyager 2 images of the south polar region of Io has revealed that a major volcanic eruption occured there during the period between the two spacecraft encounters. An annular deposit ~1400 km in diameter formed around the Aten Patera caldera (311°W, 48°S), the floor of which changed from orange to red-black. The characteristics of this eruption are remarkably similar to those described earlier for an eruption centered on Surt caldera (338°W, 45°N) that occured during the same period, also at high latitude, but in the north. Both volcanic centers were evidently inactive during the Voyager 1 and 2 encounters but were active sometime between the two. The geometric and colorimetric characteristics, as well as scale of the two annular deposits, are virtually identical; both resemble the surface features formed by the eruption of Pele (255°W, 18°S). These three very large plume eruptions suggest a class of eruption distinct from that of six smaller plumes observed to be continously active by both Voyagers 1 and 2. The smaller plumes, of which Prometheus is the type example, are longer-lived, deposit bright, whitish material, erupt at velocities of ~0.5 km sec?1, and are concentrated at low latitudes in an equatorial belt around the satellite. The very large Pele-type plumes, on the other hand, are relatively short-lived, deposit darker red materials, erupt at ~1.0 km sec?1, and (rather than restricted to a latitudinal band) are restricted in longitude from 240° to 360°W. Both direct thermal infrared temperature measurements and the implied color temperatures for quenched liquid sulfur suggest that hot spot temperatures of ~650°K are associated with the large plumes and temperatures <400°K with the small plumes. The typical eruption duration of the small plumes is at least several years; that of the large plumes appears to be of the order of days to weeks. The two classes therefore differ by more than two orders of magnitude in duration of eruption. Based on uv, visible, and infrared spectra, the small plumes seem to contain and deposit SO2 in their annuli whereas the large plumes apparently do not. Two other plumes that occur at either end of the linear feature Loki may be intermediate or hybrid between the two classes, exhibiting attributes of both. Additionally, Loki occurs in the area of overlap in the regional distributions of the two plume classes. Two distinct volcanic systems involving different volatiles may be responsible for the two classes. We propose that the discrete temperatures associated with the two classes are a direct reflection of sulfur's peculiar variation in viscosity with temperature. Over two temperature ranges (~400 to 430°K and >650°K), sulfur is a low-viscosity fluid (orange and black, respectively); at other temperatures it is either solid or has a high viscosity. As a result, there will be two zones in Io's crust in which liquid sulfur will flow freely: a shallow zone of orange sulfur and a deeper zone of black sulfur. A low-temperature system driven by SO2 heated to 400 to 400°K by the orange sulfur zone seems the best model for the small plumes; a system driven by sulfur heated to >650°K by hot or even molten silicates in the black sulfur zone seems the best explanation for the large plume class. The large Pele-type plumes are apparently concentrated in a region of the satellite in which a thinner sulfur-rich crust overlies the tidally heated silicate lithosphere, so the black sulfur zone may be fairly shallow in this region. The Prometheus-type plumes are possibly confined to the equatorial belt by some process that concentrates SO2 fluid in the equatorial crust.  相似文献   
3.
We apply a multivariate statistical method to Titan data acquired by different instruments onboard the Cassini spacecraft. We have searched through Cassini/VIMS hyperspectral cubes, selecting those data with convenient viewing geometry and that overlap with Cassini/RADAR scatterometry footprints with a comparable spatial resolution. We look for correlations between the infrared and microwave ranges the two instruments cover. Where found, the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for incidence angle, and the calibrated antenna temperature measured along with the scatterometry echoes, are combined with the infrared reflectances, with estimated errors, to produce an aggregate data set, that we process using a multivariate classification method to identify homogeneous taxonomic units in the multivariate space of the samples.In medium resolution data (from 20 to 100 km/pixel), sampling relatively large portions of the satellite’s surface, we find regional geophysical units matching both the major dark and bright features seen in the optical mosaic. Given the VIMS cubes and RADAR scatterometer passes considered in this work, the largest homogeneous type is associated with the dark equatorial basins, showing similar characteristics as each other on the basis of all the considered parameters.On the other hand, the major bright features seen in these data generally do not show the same characteristics as each other. Xanadu, the largest continental feature, is as bright as the other equatorial bright features, while showing the highest backscattering coefficient of the entire satellite. Tsegihi is very bright at 5 μm but it shows a low backscattering coefficient, so it could have a low roughness on a regional scale and/or a different composition. Another well-defined region, located southwest of Xanadu beyond the Tui Regio, seems to be detached from the surrounding terrains, being bright at 2.69, 2.78 and 5 μm but having a low radar brightness. In this way, other units can be found that show correlations or anti-correlations between the scatterometric response and the spectrophotometric behavior, not evident from the optical remote sensing data.  相似文献   
4.
The highest resolution images of Comet 19P/Borrelly show many dark features which, upon casual inspection, appear to be low albedo markings, but which may also be shadows or other photometric variations caused by a depression in the local topography. In order to distinguish between these two possible interpretations we conducted a photometric analysis of three of the most prominent of these features using six of the highest quality images from the September 22, 2001 Deep Space 1 (DS1) flyby. We find that: 1. The radiance in the darkest parts of each feature increases as phase angle decreases, similarly to the radiance behavior of the higher albedo surrounding terrain. The dark features could be either fully illuminated low albedo spots or, alternatively, they could be depressions. No part of any of the three regions was in full shadow. 2. One of the regions has a radiance profile consistent with a rimmed depression, the second, with a simple depression with no rim, and the third with a low albedo spot. 3. The regolith particles are backscattering and carbon black is one of the few candidate regolith materials that might explain this low albedo. We conclude that Borrelly's surface is geologically complex to the limit of resolution of the images with a combination complex topography, pits, troughs, peaks and ridges, and some very dark albedo markings, perhaps a factor of two to three darker than the average 3-4% albedo of the surrounding terrains. Our technique utilizing measured radiance profiles through the dark regions is able to discriminate between rimmed depressions, rimless depressions and simple albedo changes not associated with topography.  相似文献   
5.
Imaging Borrelly     
The nucleus, coma, and dust jets of short-period Comet 19P/Borrelly were imaged from the Deep Space 1 spacecraft during its close flyby in September 2001. A prominent jet dominated the near-nucleus coma and emanated roughly normal to the long axis of nucleus from a broad central cavity. We show it to have remained fixed in position for more than 34 hr, much longer than the 26-hr rotation period. This confirms earlier suggestions that it is co-aligned with the rotation axis. From a combination of fitting the nucleus light curve from approach images and the nucleus' orientation from stereo images at encounter, we conclude that the sense of rotation is right-handed around the main jet vector. The inferred rotation pole is approximately perpendicular to the long axis of the nucleus, consistent with a simple rotational state. Lacking an existing IAU comet-specific convention but applying a convention provisionally adopted for asteroids, we label this the north pole. This places the sub-solar latitude at ∼60° N at the time of the perihelion with the north pole in constant sunlight and thus receiving maximum average insolation.  相似文献   
6.
Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ±30° of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes.  相似文献   
7.
Boice  D. C.  Soderblom  L. A.  Britt  D. T.  Brown  R. H.  Sandel  B. R.  Yelle  R. V.  Buratti  B. J.  Hicks  Nelson  Rayman  Oberst  J.  Thomas  N. 《Earth, Moon, and Planets》2000,89(1-4):301-324
NASA's Deep Space 1 (DS1) spacecraft successfully encountered comet 19P/Borrelly near perihelion and the Miniature Integrated Camera and Spectrometer (MICAS) imaging system onboard DS1 returned the first high-resolution images of a Jupiter-family comet nucleus and surrounding environment. The images span solar phase angles from 88° to 52°, providing stereoscopic coverage of the dust coma and nucleus. Numerous surface features are revealed on the 8-km long nucleus in the highest resolution images(47–58 m pixel). A smooth, broad basin containing brighter regions and mesa-likestructures is present in the central part of the nucleus that seems to be the source ofjet-like dust features seen in the coma. High ridges seen along the jagged terminator lead to rugged terrain on both ends of the nucleus containing dark patches and smaller series of parallel grooves. No evidence of impact craters with diameters larger thanabout 200-m are present, indicating a young and active surface. The nucleus is very dark with albedo variations from 0.007 to 0.035. Short-wavelength, infrared spectra from 1.3 to 2.6 μm revealed a hot, dry surface consistent with less than about10% actively sublimating. Two types of dust features are seen: broad fans and highlycollimated “jets” in the sunward hemisphere that can be traced to the surface. The source region of the main jet feature, which resolved into at least three smaller “jets” near the surface, is consistent with an area around the rotation pole that is constantly illuminated by the sun during the encounter. Within a few nuclear radii, entrained dustis rapidly accelerated and fragmented and geometrical effects caused from extended source regions are present, as evidenced in radial intensity profiles centered on the jet features that show an increase in source strength with increasing cometocentric distance. Asymmetries in the dust from dayside to nightside are pronounced and may show evidence of lateral flow transporting dust to structures observed in the nightside coma. A summary of the initial results of the Deep Space 1 Mission is provided, highlighting the new knowledge that has been gained thus far.  相似文献   
8.
Joint Cassini VIMS and RADAR SAR data of ∼700-km-wide Hotei Regio reveal a rich collection of geological features that correlate between the two sets of images. The degree of correlation is greater than anywhere else seen on Titan. Central to Hotei Regio is a basin filled with cryovolcanic flows that are anomalously bright in VIMS data (in particular at 5 μm) and quite variable in roughness in SAR. The edges of the flows are dark in SAR data and appear to overrun a VIMS-bright substrate. SAR-stereo topography shows the flows to be viscous, 100-200 m thick. On its southern edge the basin is ringed by higher (∼1 km) mountainous terrain. The mountains show mixed texture in SAR data: some regions are extremely rough, exhibit low and spectrally neutral albedo in VIMS data and may be partly coated with darker hydrocarbons. Around the southern margin of Hotei Regio, the SAR image shows several large, dendritic, radar-bright channels that flow down from the mountainous terrain and terminate in dark blue patches, seen in VIMS images, whose infrared color is consistent with enrichment in water ice. The patches are in depressions that we interpret to be filled with fluvial deposits eroded and transported by liquid methane in the channels. In the VIMS images the dark blue patches are encased in a latticework of lighter bands that we suggest to demark a set of circumferential and radial fault systems bounding structural depressions. Conceivably the circular features are tectonic structures that are remnant from an ancient impact structure. We suggest that impact-generated structures may have simply served as zones of weakness; no direct causal connection, such as impact-induced volcanism, is implied. We also speculate that two large dark features lying on the northern margin of Hotei Regio could be calderas. In summary the preservation of such a broad suite of VIMS infrared color variations and the detailed correlation with features in the SAR image and SAR topography evidence a complex set of geological processes (pluvial, fluvial, tectonic, cryovolcanic, impact) that have likely remained active up to very recent geological time (<104 year). That the cryovolcanic flows are excessively bright in the infrared, particularly at 5 μm, might signal ongoing geological activity. One study [Nelson, R.M., and 28 colleagues, 2009. Icarus 199, 429-441] reported significant 2-μm albedo changes in VIMS data for Hotei Arcus acquired between 2004 and 2006, that were interpreted as evidence for such activity. However in our review of that work, we do not agree that such evidence has yet been found.  相似文献   
9.
This paper reports on the analysis of the highest spatial resolution hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during its prime mission. A bright area matches a flow-like feature coming out of a caldera-like feature observed in Synthetic Aperture Radar (SAR) data recorded by the Cassini radar experiment [Lopes et al., 2007. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus 186, 395-412, doi:10.1016/j.icarus.2006.09.006]. In this SAR image, the flow extends about 160 km east of the caldera. The contrast in brightness between the flow and the surroundings progressively vanishes, suggesting alteration or evolution of the composition of the cryolava during the lifetime of the eruptions. Dunes seem to cover part of this flow on its eastern end. We analyze the different terrains using the Spectral Mixing Analysis (SMA) approach of the Multiple-Endmember Linear Unmixing Model (MELSUM, Combe et al., 2008). The study area can be fully modeled by using only two types of terrains. Then, the VIMS spectra are compared with laboratory spectra of known materials in the relevant atmospheric windows (from 1 to 2.78 μm). We considered simple molecules that could be produced during cryovolcanic events, including H2O, CO2 (using two different grain sizes), CH4 and NH3. We find that the mean spectrum of the cryoflow-like feature is not consistent with pure water ice. It can be best fitted by linear combinations of spectra of the candidate materials, showing that its composition is compatible with a mixture of H2O, CH4 and CO2.  相似文献   
10.
Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ∼800 km north-northwest of the Huygens landing site. The crater rim-crest diameter is ∼90 km; its floor diameter is ∼60 km. A central pit/peak, 20-30 km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15 km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21° and 122° east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk “bench.” Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk’s ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号