首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   3篇
海洋学   1篇
天文学   7篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2007年   1篇
  2004年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有14条查询结果,搜索用时 515 毫秒
1.
Abstract. Two new genera of Tantulocarida are described from the Ligurian deep sea (Western Mediterranean) off Corsica. Xenalytus scotophilia is referred to the Microdajidae and differs from Microdajus GREVE in thoracopodal segmentation as well as in the presence of coupling spines on thoracopod 6 and longitudinal lamellae on the cephalic shield. Aphotocentor styx is placed in the Deoterthridae and holds an intermediate position between Deoterthron BRADFORD & HEWITT and Boreotantulus HI/YS & BOXSHALL. Some aspects of cephalon internal structure are described for the first time and give a possible explanation for the mechanism of stylet protrusion. The external structures of the oral disc are described using SEM. The discovery of well-developed muscles in the trunk and thoracopods is discussed in the light of the benthic phase the tantulus passes through. The boundary between the thorax and abdomen in the tantulus is reinterpreted, corroborating the 5–7-5 bodyplan of the hypothetical urmaxillopodan as found in the Upper Cambrian Skaracarida and possibly also Dala peilertae MOLLER. Some aspects related to dispersal, infection, and feeding are reinterpreted or approached from a different perspective. SEM of Microdajus langi GREVE gives evidence that the tantuli hatch via a conspicuous slit located at the posterior end of the female trunk sac. A worldwide key to the tantulocaridan families and genera is given, and distributional records are compiled. It is suggested that Tantulocarida might be common representatives of the temporary meiobenthos and that their present species number represents only the tip of the iceberg.  相似文献   
2.
We apply a novel adaptive mesh refinement (AMR) code, AMRVAC (Adaptive Mesh Refinement version of the Versatile Advection Code), to numerically investigate the various evolutionary phases in the interaction of a relativistic shell with its surrounding cold interstellar medium (ISM). We do this for both 1D isotropic and full 2D jet-like fireball models. This is relevant for gamma-ray bursts (GRBs), and we demonstrate that, thanks to the AMR strategy, we resolve the internal structure of the shocked shell–ISM matter, which will leave its imprint on the GRB afterglow. We determine the deceleration from an initial Lorentz factor  γ= 100  up to the almost Newtonian     phase of the flow. We present axisymmetric 2D shell evolutions, with the 2D extent characterized by their initial opening angle. In such jet-like GRB models, we discuss the differences with the 1D isotropic GRB equivalents. These are mainly due to thermally induced sideways expansions of both the shocked shell and shocked ISM regions. We found that the propagating 2D ultrarelativistic shell does not accrete all the surrounding medium located within its initial opening angle. Part of this ISM matter gets pushed away laterally and forms a wide bow-shock configuration with swirling flow patterns trailing the thin shell. The resulting shell deceleration is quite different from that found in isotropic GRB models. As long as the lateral shell expansion is merely due to ballistic spreading of the shell, isotropic and 2D models agree perfectly. As thermally induced expansions eventually lead to significantly higher lateral speeds, the 2D shell interacts with comparably more ISM matter and decelerates earlier than its isotropic counterpart.  相似文献   
3.
An exospheric kinetic solar wind model is interfaced with an observation-driven single-fluid magnetohydrodynamic (MHD) model. Initially, a photospheric magnetogram serves as observational input in the fluid approach to extrapolate the heliospheric magnetic field. Then semi-empirical coronal models are used for estimating the plasma characteristics up to a heliocentric distance of 0.1 AU. From there on, a full MHD model that computes the three-dimensional time-dependent evolution of the solar wind macroscopic variables up to the orbit of Earth is used. After interfacing the density and velocity at the inner MHD boundary, we compare our results with those of a kinetic exospheric solar wind model based on the assumption of Maxwell and Kappa velocity distribution functions for protons and electrons, respectively, as well as with in situ observations at 1 AU. This provides insight into more physically detailed processes, such as coronal heating and solar wind acceleration, which naturally arise from including suprathermal electrons in the model. We are interested in the profile of the solar wind speed and density at 1 AU, in characterizing the slow and fast source regions of the wind, and in comparing MHD with exospheric models in similar conditions. We calculate the energetics of both models from low to high heliocentric distances.  相似文献   
4.
The geochemical evolution of the fluids migra- ting at the Variscan thrust front in eastern Belgium has been investigated by a petrographic, mineralogical and geoche-mical study of ankerite, quartz and ferroan calcite veins hosted by lower Devonian rocks. Three vein generations have been recognized. The first generation consists of quartz, chlorite and ankerite filling pre- to early Variscan extensional fractures. The second generation is present as shear veins of Variscan age, and contains quartz, chlorite and ferroan calcite. The third generation consists of ankerite filling post-Variscan fractures. The oxygen and carbon isotopic composition of the two ankerite phases and of the ferroan calcites are respectively between –16.4 and –11.4‰ PDB between –17.8 and –1.7‰ PDB. This range is greater than that of calcite nodules in the lower Devonian siliciclastic sediments (δ18O= –15.6 to –11.1‰ PDB and δ13C= –13.4 to –10.2‰ PDB). This suggests precipitation of the carbonate veins from a fluid which was at most only partly isotopically buffered by the calcite nodules in the host rock. The calculated oxygen isotopic composition of the ambient fluid from which the calcite veins formed is between +7.8 and +10.0‰ SMOW. Two main fluid types have been recognized in fluid inclusions in the quartz and carbonates. The first fluid type is present as secondary fluid inclusions in the first and second vein generations. The fluid has a salinity of 0.5–7.2 eq. wt.% NaCl and a high, but variable, homogenization temperature (Th=124–188°C). Two origins can be proposed for this fluid. It could have been expelled from the lower Devonian or could have been derived from the metamorphic zone to the south of the area studied. Taking into account the microthermometric and stable-isotope data, and the regional geological setting, the fluid most likely originated from metamorphic rocks and interacted with the lower Devonian along its migration path. This is in agreement with numerical simulations of the palaeofluid and especially the palaeotempera-ture field, which is based on chlorite geothermometry and vitrinite reflectance data. The second fluid type occurs as secondary inclusions in the shear veins and as fluid inclusions of unknown origin in post-Variscan ankerite veins. Therefore, it has a post-Variscan age. The inclusions are characterized by a high salinity (18.6–22.9 eq. wt.% CaCl2). The composition of the fluid is similar to that which caused the development of Mississippi Valley-type Pb–Zn deposits in Belgium.  相似文献   
5.
We present the main findings of two recent studies using high-resolution MHD simulations of supersonic magnetized shear flow layers. First, a strong large-scale coalescence effect partially countered by small-scale reconnection events is shown to dominate the dynamics in a two-dimensional layer subject to Kelvin-Helmholtz (KH) instabilities. Second, an interaction mechanism between two different types of instabilities (KH and current-driven modes) is shown to occur in a cylindrical jet configuration embedded in an helical magnetic field. Finally, we discuss the implications of these results for astrophysical jets survival.  相似文献   
6.
7.
Many simplifications are used in modeling surface runoff over a uniform slope. A very common simplification is to determine the infiltration rate independent of the overland flow depth and to combine it afterward with the kinematic-wave equation to determine the overland flow depth. Another simplication is to replace the spatially variable infiltration rates along the slope i(x, t) due to the water depth variations h(x,t) with an infiltration rate that is determined at a certain location along the slope. The aim of this study is to evaluate the errors induced by these simplications on predicted infiltration rates, overland flow depths, and total runoff volume. The error analysis is accomplished by comparing a simplified model with a model where the interaction between the overland flow depth and infiltration rate is counted. In this model, the infiltration rate is assumed to vary along the slope with the overland flow depth, even for homogeneous soil profiles. The kinematic-wave equation with interactive infiltration rate, calculated along the slopy by Richard's equation, are then solved by a finite difference scheme for a 100-m-long uniform slope. In the first error analysis, we study the effect of combining an ‘exact’ and ‘approximate’ one-dimensional infiltration rate with the kinematic-wave equation for three different soil surface roughness coefficients. The terms ‘exact’ and ‘approximate’ stand for the solution of Richard's equation with and without using the overland flow depth in the boundary condition, respectively. The simulations showed that higher infiltration rates and lower overland flow depths are obtained during the rising stage of the hydrograph when overland flow depth is used in the upper boundary condition of the one-dimensional Richard's equation. During the recession period, the simplified model predicts lower infiltration rates and higher overland flow depths. The absolute relative errors between the ‘exact’ and ‘approximate’ solutions are positively correlated to the overland flow depths which increase with the soil surface roughness coefficient. For this error analysis, the relative errors in surface runoff volume per unit slope width throughout the storm are much smaller than the relative errors in momentary overland flow depths and discharges due to the alternate signs of the deviations along the rising and falling stages. In the second error analysis, when the spatially variable infiltration rate along the slope i(x, t) is replaced in the kinematic-wave equation by i(t), calculated at the slope outlet, the overland flow depth is underestimated during the rising stage of the hydrograph and overestimated during the falling stage. The deviations during the rising stage are much smaller than the deviations during the falling stage, but they are of a longer duration. This occurs because the solution with i(x, t) recognizes that part of the slope becomes dry after rainfall stops, while overland flow still exists with i(t) determined at the slope outlet. As obtained for the first error analysis, the relative errors in surface runoff volume per unit slope width are also much smaller than the relative errors in momentary overland flow depths and discharges. The relation between the errors in overland flow depth and discharge to different mathematical simplifications enables to evaluate whether certain simplifications are justified or more computational efforts should be used.  相似文献   
8.
9.
A suitable model for the macroscopic behavior of accretion disk-jet systems is provided by the equations of MagnetoHydroDynamics (MHD). These equations allow us to perform scale-encompassing numerical simulations of multidimensional nonlinear magnetized plasma flows. For that purpose, we continue the development and exploitation of the Versatile Advection Code (VAC) along with its recent extension which employs dynamically controlled grid adaptation. In the adaptive mesh refinement AMRVAC code, modules for simulating any-dimensional special relativistic hydro- and magnetohydrodynamic problems are currently operational. Here, we review recent 3D MHD simulations of fundamental plasma instabilities, relevant when dealing with cospatial shear flow and twisted magnetic fields. Such magnetized jet flows can be susceptible to a wide variety of hydro (e.g. Kelvin-Helmholtz) or magnetohydrodynamic (e.g. current driven kink) instabilities. Recent MHD computations of 3D jet flows have revealed how such mutually interacting instabilities can in fact aid in maintaining jet coherency. Another breakthrough from computational magnetofluid modeling is the demonstration of continuous, collimated, transmagnetosonic jet launching from magnetized accretion disks. Summarizing, MHD simulations are rapidly gaining realism and significantly advance our understanding of nonlinear astrophysical magnetofluid dynamics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号