首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
天文学   11篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   4篇
  2004年   2篇
排序方式: 共有11条查询结果,搜索用时 93 毫秒
1.
We analyze a series of complex interplanetary events and their solar origins that occurred between 19 and 23 May 2007 using observations by the STEREO and Wind satellites. The analyses demonstrate the new opportunities offered by the STEREO multispacecraft configuration for diagnosing the structure of in situ events and relating them to their solar sources. The investigated period was characterized by two high-speed solar wind streams and magnetic clouds observed in the vicinity of the sector boundary. The observing satellites were separated by a longitudinal distance comparable to the typical radial extent of magnetic clouds at 1 AU (fraction of an AU), and, indeed, clear differences were evident in the records from these spacecraft. Two partial-halo coronal mass ejections (CMEs) were launched from the same active region less than a day apart, the first on 19 May and the second on 20 May 2007. The clear signatures of the magnetic cloud associated with the first CME were observed by STEREO B and Wind while only STEREO A recorded clear signatures of the magnetic cloud associated with the latter CME. Both magnetic clouds appeared to have interacted strongly with the ambient solar wind and the data showed evidence that they were a part of the coronal streamer belt. Wind and STEREO B also recorded a shocklike disturbance propagating inside a magnetic cloud that compressed the field and plasma at the cloud’s trailing portion. The results illustrate how distant multisatellite observations can reveal the complex structure of the extension of the coronal streamer into interplanetary space even during the solar activity minimum. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   
2.
We report observations of the formation of two filaments?–?one active and one quiescent, and their subsequent interactions prior to eruption. The active region filament appeared on 17 May 2007, followed by the quiescent filament about 24 hours later. In the 26 hour interval preceding the eruption, which occurred at around 12:50 UT on 19 May 2007, we see the two filaments attempting to merge and filament material is repeatedly heated suggesting magnetic reconnection. The filament structure is observed to become increasingly dynamic preceding the eruption with two small hard X-ray sources seen close to the active part of the filament at around 01:38 UT on 19 May 2007 during one of the activity episodes. The final eruption on 19 May at about 12:51 UT involves a complex CME structure, a flare and a coronal wave. A magnetic cloud is observed near Earth by the STEREO-B and WIND spacecraft about 2.7 days later. Here we describe the behaviour of the two filaments in the period prior to the eruption and assess the nature of their dynamic interactions.  相似文献   
3.
A filament eruption, accompanied by a B9.5 flare, coronal dimming, and an EUV wave, was observed by the Solar TERrestrial Relations Observatory (STEREO) on 19 May 2007, beginning at about 13:00 UT. Here, we use observations from the SECCHI/EUVI telescopes and other solar observations to analyze the behavior and geometry of the filament before and during the eruption. At this time, STEREO A and B were separated by about 8.5°, sufficient to determine the three-dimensional structure of the filament using stereoscopy. The filament could be followed in SECCHI/EUVI 304 Å stereoscopic data from about 12 hours before to about 2 hours after the eruption, allowing us to determine the 3D trajectory of the erupting filament. From the 3D reconstructions of the filament and the chromospheric ribbons in the early stage of the eruption, simultaneous heating of both the rising filamentary material and the chromosphere directly below is observed, consistent with an eruption resulting from magnetic reconnection below the filament. Comparisons of the filament during eruption in 304 Å and Hα? show that when it becomes emissive in He II, it tends to disappear in Hα?, indicating that the disappearance probably results from heating or motion, not loss, of filamentary material.  相似文献   
4.
The spectacular prominence eruption and CME of 31 August 2007 are analyzed stereoscopically using data from NASA??s twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. The technique of tie pointing and triangulation (T&T) is used to reconstruct the prominence (or filament when seen on the disk) before and during the eruption. For the first time, a filament barb is reconstructed in three-dimensions, confirming that the barb connects the filament spine to the solar surface. The chirality of the filament system is determined from the barb and magnetogram and confirmed by the skew of the loops of the post-eruptive arcade relative to the polarity reversal boundary below. The T&T analysis shows that the filament rotates as it erupts in the direction expected for a filament system of the given chirality. While the prominence begins to rotate in the slow-rise phase, most of the rotation occurs during the fast-rise phase, after formation of the CME begins. The stereoscopic analysis also allows us to analyze the spatial relationships among various features of the eruption including the pre-eruptive filament, the flare ribbons, the erupting prominence, and the cavity of the coronal mass ejection (CME). We find that erupting prominence strands and the CME have different (non-radial) trajectories; we relate the trajectories to the structure of the coronal magnetic fields. The possible cause of the eruption is also discussed.  相似文献   
5.
The POLAR Investigation of the Sun (POLARIS) mission uses a combination of a gravity assist and solar sail propulsion to place a spacecraft in a 0.48 AU circular orbit around the Sun with an inclination of 75° with respect to solar equator. This challenging orbit is made possible by the challenging development of solar sail propulsion. This first extended view of the high-latitude regions of the Sun will enable crucial observations not possible from the ecliptic viewpoint or from Solar Orbiter. While Solar Orbiter would give the first glimpse of the high latitude magnetic field and flows to probe the solar dynamo, it does not have sufficient viewing of the polar regions to achieve POLARIS’s primary objective: determining the relation between the magnetism and dynamics of the Sun’s polar regions and the solar cycle.
T. AppourchauxEmail:
  相似文献   
6.
Previous studies of the source regions of solar wind sampled by ACE and Ulysses showed that some solar wind originates from open magnetic flux rooted in active regions. These solar wind sources were labeled active-region sources when the open flux was from a strong field region with no corresponding coronal hole in the NSO He 10830 Å synoptic coronal-hole maps. Here, we present a detailed investigation of several of these active-region sources using ACE and Ulysses solar wind data, potential field models of the corona, and solar imaging data. We find that the solar wind from these active-region sources has distinct signatures, e.g., it generally has a higher oxygen charge state than wind associated with helium-10830 Å coronal-hole sources, indicating a hotter source region, consistent with the active region source interpretation. We compare the magnetic topology of the open field lines of these active-region sources with images of the hot corona to search for corresponding features in EUV and soft X-ray images. In most, but not all, cases, a dark area is seen in the EUV and soft X-ray image as for familiar coronal-hole sources. However, in one case no dark area was evident in the soft X-ray images: the magnetic model showed a double dipole coronal structure consistent with the images, both indicating that the footpoints of the open field lines, rooted deep within the active region, lay near the separatrix between loops connecting to two different opposite polarity regions.  相似文献   
7.
Previous studies of the source regions of solar wind sampled by ACE and Ulysses showed that some solar wind originates from open magnetic flux rooted in active regions. These solar wind sources were labeled active-region sources when the open flux was from a strong field region with no corresponding coronal hole in the NSO He 10830 Å synoptic coronal-hole maps. Here, we present a detailed investigation of several of these active-region sources using ACE and Ulysses solar wind data, potential field models of the corona, and solar imaging data. We find that the solar wind from these active-region sources has distinct signatures, e.g., it generally has a higher oxygen charge state than wind associated with helium-10830 Å coronal-hole sources, indicating a hotter source region, consistent with the active region source interpretation. We compare the magnetic topology of the open field lines of these active-region sources with images of the hot corona to search for corresponding features in EUV and soft X-ray images. In most, but not all, cases, a dark area is seen in the EUV and soft X-ray image as for familiar coronal-hole sources. However, in one case no dark area was evident in the soft X-ray images: the magnetic model showed a double dipole coronal structure consistent with the images, both indicating that the footpoints of the open field lines, rooted deep within the active region, lay near the separatrix between loops connecting to two different opposite polarity regions.  相似文献   
8.
9.
We describe the scientific motivation, experimental basis, design methodology, and simulated performance of the ExaVolt Antenna (EVA) mission, and planned ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. EVA will improve over ANITA’s integrated totals – the current state-of-the-art in UHE suborbital payloads – by 1–2 orders of magnitude in a single flight. The design is based on a novel application of toroidal reflector optics which utilizes a super-pressure balloon surface, along with a feed-array mounted on an inner membrane, to create an ultra-large radio antenna system with a synoptic view of the Antarctic ice sheet below it. Radio impulses arise via the Askaryan effect when UHE neutrinos interact within the ice, or via geosynchrotron emission when UHE cosmic rays interact in the atmosphere above the continent. EVA’s instantaneous antenna aperture is estimated to be several hundred m2 for detection of these events within a 150–600 MHz band. For standard cosmogenic UHE neutrino models, EVA should detect of order 30 events per flight in the EeV energy regime. For UHE cosmic rays, of order 15,000 geosynchrotron events would be detected in total, several hundred above 10 EeV, and of order 60 above the GZK cutoff energy.  相似文献   
10.
Seismic maps of the Sun’s far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun ( http://jsoc.stanford.edu/data/farside/ ). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号