首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
天文学   3篇
  2003年   2篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
NOAA 8210 has been a region showing a remarkable level of activity well before solar maximum. Dominated by a large, rapidly rotating spot, it produced several intense flares during its disk passage at the end of April–beginning of May 1998. We examine the development of AR 8210 in H and white light (WL) and study the evolution of its complex magnetic topology. While the other principal flares are briefly reviewed, the great X1.1/3B flare of 2 May, which was observed at Kanzelhöhe Solar Observatory during a SOHO/UVCS ground support campaign, is studied in detail. This event has been documented in full-disk H and Na-D intensitygrams, Dopplergrams, and magnetograms, with a time cadence of one minute each. The flare was associated with a CME and produced significant geomagnetic effects. Furthermore, we point out the perspectives for our planned Flare Monitoring and Alerting System, since the two new instruments (Magneto-Optical Filter and Digital H camera), which made their first operational run with the campaign, are crucial components for this program.  相似文献   
2.
Observations of the quiescent filament eruption and the spotless two-ribbon flare of 12 September 2000 are presented. A simple flare morphology, large spatial scales, and a suitable viewing angle provide insight into characteristics of the energy release process which is attributed to the reconnection process in the current sheet formed below the eruptive filament. The flare ribbons appeared and started to expand laterally while the filament was still recognizable, enabling simultaneous measurements of the ribbon separation w and the height of the lower edge of the filament, h. The ratio w/h estimated for the expanding portions of ribbons indicates that the width-to-length ratio of the current sheet at the onset of the fast reconnection ranges between and . The ribbon elements characterized by w/h> remained stationary. The Nançay radioheliograph data in the decimeter–meter wavelengths show one group of radio bursts ahead of the filament (moving type IV burst) and another group behind the filament. The centroids of the radio sources behind the filament were confined to the region outlined by the lower edge of the filament and the magnetic inversion line, suggestive of emission from the current sheet. Sources were preferably located close to the lower edge of the filament and some appeared close to the magnetic inversion line. Two possible explanations are discussed: one in terms of the fast-mode bow shocks in the reconnection outflow jets, and another in terms of a multiple tearing of the current sheet and subsequent coalescence of plasmoids.  相似文献   
3.
A huge filament eruption of 12 September 2000 associated with a two-ribbon spotless flare is described. During the acceleration phase the shape of the filament changed, and signatures of topological restructuring of large-scale coronal magnetic fields were inferred by tracking changes of nearby coronal holes. At the same time electron beams associated with the flare impulsive phase escaped into interplanetary space. Based on the time–spatial relationships a hypothesis is put forward, according to which the reconnection between the arcade magnetic field and the ambient field provides a temporary link between the open field lines and the flare energy release site, enabling the escape of electron beams into interplanetary space.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号