首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   3篇
地球物理   2篇
地质学   4篇
海洋学   1篇
天文学   4篇
自然地理   4篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  1988年   2篇
  1987年   1篇
  1961年   1篇
  1937年   1篇
排序方式: 共有15条查询结果,搜索用时 46 毫秒
1.
2.
3.
A new method for accurate determination of oxygen isotopes in uranium oxides encountered in the nuclear fuel cycle was developed using the conventional BrF5 fluorination technique. Laser‐assisted fluorination was tested for comparison. We focused on fine powders of triuranium octoxide (U3O8), uranium dioxide (UO2±x with 0 ≤ x ≤ 0.25), uranium trioxide (UO3.nH2O, with 0.8 ≤ n ≤ 2) and diuranates (M2U2O7.nH2O, with M = NH4, Na or Mg0.5 and 0 ≤ n ≤ 6). Fluorination at room temperature and heating under vacuum at 150 °C are shown to eliminate both adsorbed and structural water from the powder samples. Precision fit for purpose of δ18O values (± 0.3‰, 1s) and oxygen yields (close to 100%) were obtained for U3O8 and UO2 where oxygen is only bound to uranium. A lower precision was observed for UO3.nH2O and M2U2O7.nH2O where oxygen is both present in the structural H2O and bonded to uranium and where the extracted O2(g) can be contaminated by NF3 and NOx compounds. Laser‐assisted fluorination gave shifted δ18O values between +0.8 and +1.4‰ for U3O8, around ?0.8‰ for UO3.nH2O and between ?3.9 and ?4.5‰ for M2U2O7.nH2O (± 0.3‰, 1s) compared with the conventional method.  相似文献   
4.
We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury’s sodium exosphere. The distribution of sodium in Mercury’s exosphere during the period January 12-15, 2008, was mapped using the McMath-Pierce solar telescope with the 5″ × 5″ image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury’s anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD, but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization. We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 × 106 cm−2 s−1. The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.  相似文献   
5.
We present a Monte Carlo model of the distribution of neutral sodium in Mercury’s exosphere and tail using data from the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during the first two flybys of the planet in January and September 2008. We show that the dominant source mechanism for ejecting sodium from the surface is photon-stimulated desorption (PSD) and that the desorption rate is limited by the diffusion rate of sodium from the interior of grains in the regolith to the topmost few monolayers where PSD is effective. In the absence of ion precipitation, we find that the sodium source rate is limited to ∼106-107 cm−2 s−1, depending on the sticking efficiency of exospheric sodium that returns to the surface. The diffusion rate must be at least a factor of 5 higher in regions of ion precipitation to explain the MASCS observations during the second MESSENGER flyby. We estimate that impact vaporization of micrometeoroids may provide up to 15% of the total sodium source rate in the regions observed. Although sputtering by precipitating ions was found not to be a significant source of sodium during the MESSENGER flybys, ion precipitation is responsible for increasing the source rate at high latitudes through ion-enhanced diffusion.  相似文献   
6.
7.
8.
The Demeter microsatellite and ground segment   总被引:4,自引:0,他引:4  
The Demeter program is the first application of the Myriade microsatellite program conducted by the Cnes (French Space Agency) since 1997. The Myriade objective was to benefit from the miniaturization of the technologies to develop a product with a reduced size, weight and cost able to implement either scientific missions, demonstrators or operational applications in different areas: earth observation, astronomy, fundamental physics or telecommunications, within limited financial budget.The Demeter satellite was launched in end of June 2004, from Baikonour, aboard a Dnepr launcher, on a sun synchronous orbit at 710 km altitude. Its main scientific objectives are the detection and characterization of ionosphere electrical and magnetic disturbances in connection with a seismic activity.The scientific payload has been built by French scientific institutes (LPCE, CESR, CETP) involved in external and internal geophysics and by SSD/ESTEC (ESA). It is composed of several electrical and magnetic sensors, an ion spectrometer, an energetic particle analyzer and a Langmuir probe.The Demeter platform is designed in order to offer a high level of performances in terms of power, attitude and orbit control, data storage and transmission, flexibility. For example the large amount of scientific data is transmitted to the ground station with a high data rate telemetry link in X band.This paper describes the Demeter satellite and ground segment. It focuses on the specific design adaptations of the Myriade product for Demeter and it presents the preliminary in orbit platform performances.  相似文献   
9.
Multiple pieces of geologic evidence suggest that interfaces between contrasted lithologies exert a strong control on the fate of volatiles in subduction zones. Here we present results from a contact between serpentinites and sediments, located in Corsica and metamorphosed in the blueschist facies during the alpine orogeny. It was shown previously that carbonates in the sediments have been reduced to graphitic carbonaceous material within a 5–10-cm-thick reaction zone at the contact with serpentinites. In an effort to investigate the mechanisms governing this unusual process, bulk rock geochemical analyses incorporating a statistical analysis of compositional data are presented. Observations show that the fate of C was decoupled from that of other elements such as O, H, and large-ion lithophile elements—e.g. K, Sr, Ba...,As—that were extensively leached from the reaction zone. Notably, Na is strongly enriched in the reaction zone and structurally linked to pectolite. Reducing conditions, manifested by the depletion of O in the reaction zone compared to the bulk metasediment, were likely maintained by the presence of Fe(II) in the serpentinite. Moreover, thermodynamic calculations show that the low solubility of carbon in COH fluids at high-pressure and low-temperature conditions was the main driver for graphite precipitation synchronously with carbonate destabilization. This may have been kinetically favored by the presence of already existing graphitized carbonaceous material and phengite in the metasediment. Limited lateral flow might have contributed as well to the geochemical and petrological patterns observed in these rocks.  相似文献   
10.
The well-documented 1883 eruption of Krakatau volcano (Indonesia) offers an opportunity to couple the eruption’s history with the tsunami record. The aim of this paper is not to re-analyse the scenario for the 1883 eruption but to demonstrate that the study of tsunami deposits provides information for reconstructing past eruptions. Indeed, though the characteristics of volcanogenic tsunami deposits are similar to those of other tsunami deposits, they may include juvenile material (e.g. fresh pumice) or be interbedded with distal pyroclastic deposits (ash fall, surges), due to their simultaneity with the eruption. Five kinds of sedimentary and volcanic facies related to the 1883 events were identified along the coasts of Java and Sumatra: (1) bioclastic tsunami sands and (2) pumiceous tsunami sands, deposited respectively before and during the Plinian phase (26–27 August); (3) rounded pumice lapilli reworked by tsunami; (4) pumiceous ash fall deposits and (5) pyroclastic surge deposits (only in Sumatra). The stratigraphic record on the coasts of Java and Sumatra, which agrees particularly well with observations of the 1883 events, is tentatively linked to the proximal stratigraphy of the eruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号