首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
天文学   24篇
  2012年   3篇
  2009年   3篇
  2007年   10篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1997年   3篇
排序方式: 共有24条查询结果,搜索用时 250 毫秒
1.
We present an overview of the dust coma observations of Comet Tempel 1 that were obtained during the approach and encounter phases of the Deep Impact mission. We use these observations to set constraints on the pre-impact activity of the comet and discuss some preliminary results. The temporal and spatial changes that were observed during approach reveal three distinct jets rotating with a 1.7-day periodicity. The brightest jet produces an arcuate feature that expands outward with a projected velocity of about 12 m s−1, suggesting that the ambient dust coma is dominated by millimeter-sized dust grains. As the spatial resolution improves, more jets and fans are revealed. We use stereo pairs of high-resolution images to put some crude constraints on the source locations of some of the brightest features. We also present a number of interesting coma features that were observed, including surface jets detected at the limb of the nucleus when the exposed ice patches are passing over the horizon, and features that appear to be jets emanating from unilluminated sources near the negative pole. We also provide a list of 10 outbursts of various sizes that were observed in the near-continuous monitoring during the approach phase.  相似文献   
2.
We present results from the Chandra X-ray Observatory's extensive campaign studying Comet 9P/Tempel 1 (T1) in support of NASA's Deep Impact (DI) mission. T1 was observed for ∼295 ks between 30th June and 24th July 2005, and continuously for ∼64 ks on July 4th during the impact event. X-ray emission qualitatively similar to that observed for the collisionally thin Comet 2P/Encke system [Lisse, C.M., Christian, D.J., Dennerl, K., Wolk, S.J., Bodewits, D., Hoekstra, R., Combi, M.R., Mäkinen, T., Dryer, M., Fry, C.D., Weaver, H., 2005b. Astrophys. J. 635 (2005) 1329-1347] was found, with emission morphology centered on the nucleus and emission lines due to C, N, O, and Ne solar wind minor ions. The comet was relatively faint on July 4th, and the total increase in X-ray flux due to the Deep Impact event was small, ∼20% of the immediate pre-impact value, consistent with estimates that the total coma neutral gas release due to the impact was 5×106 kg (∼10 h of normal emission). No obvious prompt X-ray flash due to the impact was seen. Extension of the emission in the direction of outflow of the ejecta was observed, suggesting the presence of continued outgassing of this material. Variable spectral features due to changing solar wind flux densities and charge states were clearly seen. Two peaks, much stronger than the man-made increase due to Deep Impact, were found in the observed X-rays on June 30th and July 8th, 2005, and are coincident with increases in the solar wind flux arriving at the comet. Modeling of the Chandra data using observed gas production rates and ACE solar wind ion fluxes with a CXE mechanism for the emission is consistent, overall, with the temporal and spectral behavior expected for a slow, hot wind typical of low latitude emission from the solar corona interacting with the comet's neutral coma, with intermittent impulsive events due to solar flares and coronal mass ejections.  相似文献   
3.
The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8±0.2 Myr ago. Using the Spitzer Space Telescope we have photometrically sampled the thermal continua (3.5-22 μm) of 17 Karin cluster asteroids of different sizes, down to the smallest members discovered so far, in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. Our targets are also amongst the smallest main-belt asteroids observed to date in the mid-infrared. The derived diameters range from 17.3 km for 832 Karin to 1.5 km for 75176, with typical uncertainties of 10%. The mean albedo is pv=0.215±0.015, compared to 0.20±0.07 for 832 Karin itself (for H=11.2±0.3), consistent with the view that the Karin asteroids are closely related physically as well as dynamically. The albedo distribution (0.12?pv?0.32) is consistent with the range associated with S-type asteroids but the variation from one object to another appears to be significant. Contrary to the case for near-Earth asteroids, our data show no evidence of an albedo dependence on size. However, the mean albedo is lower than expected for young, fresh “S-type” surfaces, suggesting that space weathering can darken main-belt asteroid surfaces on very short timescales. Our data are also suggestive of a connection between surface roughness and albedo, which may reflect rejuvenation of weathered surfaces by impact gardening. While the available data allow only estimates of lower limits for thermal inertia, we find no evidence for the relatively high values of thermal inertia reported for some similarly sized near-Earth asteroids. Our results constitute the first observational confirmation of the legitimacy of assumptions made in recent modeling of the formation of the Karin cluster via a single catastrophic collision 5.8±0.2 Myr ago.  相似文献   
4.
On UT 2005 July 4 we observed Comet 9P/Tempel 1 during its encounter with the Deep Impact flyby spacecraft and impactor. Using the SpeX near-infrared spectrograph mounted on NASA's Infrared Telescope Facility, we obtained 0.8-to-2.5 μm flux-calibrated spectral light curves of the comet for 12 min before and 14 min after impact. Our cadence was just 1.1 s. The light curve shows constant flux before the impact and an overall brightening trend after the impact, but not at a constant rate. Within a 0.8-arcsec-radius circular aperture, the comet rapidly-brightened by 0.63 mag at 1.2 μm in the first minute. Thereafter, brightening was more modest, averaging about 0.091 mag/min at 1.2 μm, although apparently not quite constant. In addition we see a bluing in the spectrum over the post-impact period of about 0.07 mag in J-H and 0.35 mag in J-K. The majority of this bluing happened in the first minute, and the dust only marginally blued after that, in stark contrast to the continued brightening. The photometric behavior in the light curve is due to a combination of crater formation effects, expansion of the ejecta cloud, and evolution of liberated dust grains. The bluing is likely due to an icy component on those grains, and the icy grains would have had to have a devolatilization timescale longer than 14 min (unless they were shielded by the optical depth of the cloud). The bluing could also have been caused by the decrease in the “typical” size of the dust grains after impact. Ejecta dominated by submicron grains, as inferred from other observations, would have stronger scattering at shorter wavelengths than the much larger grains observed before impact.  相似文献   
5.
Deep Impact images of the nucleus of Comet Tempel 1 reveal pervasive layering, possible impact craters, flows with smooth upper surfaces, and erosional stripping of material. There are at least 3 layers 50-200 m thick that appear to extend deep into the nucleus, and several layers 1-20 m thick that parallel the surface and are being eroded laterally. Circular depressions show geographical variation in their forms and suggest differences in erosion rates or style over scales >1 km. The stratigraphic arrangement of these features suggests that the comet experienced substantial periods of little erosion. Smooth surfaces trending downslope suggest some form of eruption of materials from this highly porous object. The Deep Impact images show that the nucleus of Tempel 1 cannot be modeled simply as either an onion-layer or rubble pile structure.  相似文献   
6.
We present the first results of the Palomar Adaptive Optics observations taken during the Deep Impact encounter with 9P/Tempel 1 in July 2005. We have combined the Palomar near-IR imaging data with our visual wavelength images obtained simultaneously at JPL's Table Mountain Observatory to cover the total wavelength range from 0.4 to 2.3 μm in the B, V, R, I, J, H, and K filter bands, spanning the dates from 2005 July 03-07. We also include in our overall analysis images taken on the pre-encounter dates of June 1 and June 15, 2005. The broad wavelength range of our observations, along with high temporal resolution, near-IR sensitivity, and spatial resolution of our imaging, have enabled us to place constraints on the temperature of the impact flash and incandescent plume of >700 K, and to provide mean dust velocities of order approximately 1.25 h after impact derived from our 1.64 μm observations. Our ejected dust mass estimates, as derived from our near-IR observations, are an order of magnitude less than those previously reported for visual wavelength observations.  相似文献   
7.
We consider the hypothesis that the layering observed on the surface of Comet 9P/Tempel 1 from the Deep Impact spacecraft and identified on other comet nuclei imaged by spacecraft (i.e., 19P/Borrelly and 81P/Wild 2) is ubiquitous on Jupiter family cometary nuclei and is an essential element of their internal structure. The observational characteristics of the layers on 9P/Tempel 1 are detailed and considered in the context of current theories of the accumulation and dynamical evolution of cometary nuclei. The works of Donn [Donn, B.D., 1990. Astron. Astrophys. 235, 441-446], Sirono and Greenberg [Sirono, S.-I., Greenberg, J.M., 2000. Icarus 145, 230-238] and the experiments of Wurm et al. [Wurm, G., Paraskov, G., Krauss, O., 2005. Icarus 178, 253-263] on the collision physics of porous aggregate bodies are used as basis for a conceptual model of the formation of layers. Our hypothesis is found to have implications for the place of origin of the JFCs and their subsequent dynamical history. Models of fragmentation and rubble pile building in the Kuiper belt in a period of collisional activity (e.g., [Kenyon, S.J., Luu, J.X., 1998. Astron. J. 115, 2136-2160; 1999a. Astron. J. 118, 1101-1119; 1999b. Astrophys. J. 526, 465-470; Farinella, P., Davis, D.R., Stern, S.A., 2000. In: Mannings, V., Boss, A.P., Russell, S.S. (Eds.), Protostars and Planets IV. Univ. of Arizona Press, Tucson, pp. 1255-1282; Durda, D.D., Stern, S.J., 2000. Icarus 145, 220-229]) following the formation of Neptune appear to be in conflict with the observed properties of the layers and irreconcilable with the hypothesis. Long-term residence in the scattered disk [Duncan, M.J., Levison, H.F., 1997. Science 276, 1670-1672; Duncan, M., Levison, H., Dones, L., 2004. In: Festou, M., Keller, H.U., Weaver, H.A. (Eds.), Comets II. Univ. of Arizona Press, Tucson, pp. 193-204] and/or a change in fragmentation outcome modeling may explain the long-term persistence of primordial layers. In any event, the existence of layers places constraints on the environment seen by the population of objects from which the Jupiter family comets originated. If correct, our hypothesis implies that the nuclei of Jupiter family comets are primordial remnants of the early agglomeration phase and that the physical structure of their interiors, except for the possible effects of compositional phase changes, is largely as it was when they were formed. We propose a new model for the interiors of Jupiter family cometary nuclei, called the talps or “layered pile” model, in which the interior consists of a core overlain by a pile of randomly stacked layers. We discuss how several cometary characteristics—layers, surface texture, indications of flow, compositional inhomogeneity, low bulk density low strength, propensity to split, etc., might be explained in terms of this model. Finally, we make some observational predictions and suggest goals for future space observations of these objects.  相似文献   
8.
Comet McNaught-Hartley was observed in five 1-h exposures on January 8-14 2001 using the advanced CCD imaging spectrometer on board the Chandra X-ray Observatory. The X-ray image of the comet does not show a crescent-like shape. The brightest region is offset from the nucleus between the sunward and comet velocity directions. The comet mean X-ray luminosity is equal to 7.8×1015 erg s−1 for photon energy E>150 eV and aperture ρ=1.5×105 km where the comet X-ray brightness exceeds 20% of the peak value. Gas production rate was 1029 s−1 during the observations, and the efficiency of X-ray excitation was equal to 4×10−14 erg AU3/2. Day-to-day variations in X-rays reached a factor of 5. The strongest short-term variation was by a factor of 1.75 for 1600 s. This variation may be explained by a decline in the solar-wind flux by the same factor in ≈800 s. The comet and Earth were seeing different faces of the Sun, and time delay in the solar-wind events on the Earth and the comet was long, equal to 6 days. The best correlation between the comet X-ray luminosity and the solar-wind proton density is for the time delay of 5.5 days and may be explained by the higher velocity of heavy ions.Careful background subtraction made it possible to extract the comet spectrum from 150 to 1000 eV. No signal was detected at E>1000 eV, and a 3σ upper limit to any emission with E>1000 eV is 0.3% of the photon emission at 150-1000 eV. The best χ2-fit model to the spectrum consists of nine narrow emission features. The emission energies and intensities are in good agreement with a charge exchange spectrum calculated by us for the slow solar wind. Using this spectrum, we identify the observed emissions as (Ne7++Mg7++Mg8+) at 195 eV, (Mg8++Mg9++Si8+) at 250 eV, C5+ at 370 and 460 eV, O6+ at 560 eV, O7+ at 650, 780, and 840 eV, and Ne8+ at 940 eV. X-ray spectroscopy of comets may be used to diagnose the solar-wind composition and its interaction with comets.  相似文献   
9.
Comet 9P/Tempel 1, the target of the Deep Impact mission, has been intensively observed for a long time period before the encounter. Pre-impact ground based monitoring of the comet was an important prerequisite for the success of the first space experiment in which a comet is treated by an artificial impact. It provided the background data needed to disentangle the features caused by the impact from variations caused by the natural activity of the comet. In this paper we present results from the ESO-monitoring of the comet, conducted in the thermal infrared and optical spectral ranges during several months before the Deep Impact encounter with the comet.  相似文献   
10.
C.M. Lisse  K.E. Kraemer  A. Li 《Icarus》2007,187(1):69-86
Spitzer Infrared Spectrograph observations of the Deep Impact experiment in July 2005 have created a new paradigm for understanding the infrared spectroscopy of primitive solar nebular (PSN) material—the ejecta spectrum is the most detailed ever observed in cometary material. Here we take the composition model for the material excavated from Comet 9P/Tempel 1's interior and successfully apply it to Infrared Space Observatory spectra of material emitted from Comet C/1995 O1 (Hale-Bopp) and the circumstellar material found around the young stellar object HD 100546. Comparison of our results with analyses of the cometary material returned by the Stardust spacecraft from Comet 81P/Wild 2, the in situ Halley flyby measurements, and the Deep Impact data return provides a fundamental cross-check for the spectral decomposition models presented here. We find similar emission signatures due to silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides in the two ISO-observed systems but there are significant differences as well. Compared to Tempel 1, no Fe-rich olivines and few crystalline pyroxenes are found in Hale-Bopp and HD 100546. The YSO also lacks amorphous olivine, while being super-rich in amorphous pyroxene. All three systems show substantial emission due to polycyclic aromatic hydrocarbons. The silicate and PAH material in Hale-Bopp is clearly less processed than in Tempel 1, indicating an earlier age of formation for Hale-Bopp. The observed material around HD 100546 is located ∼13 AU from the central source, and demonstrates an unusual composition due to either a very different, non-solar starting mix of silicates or due to disk material processing during formation of the interior disk cavity and planet(s) in the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号