首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   14篇
地质学   16篇
海洋学   5篇
天文学   6篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1996年   1篇
  1994年   2篇
  1984年   1篇
  1979年   1篇
  1972年   1篇
排序方式: 共有44条查询结果,搜索用时 234 毫秒
1.
The Quaternary Takidani Granodiorite (Japan Alps) is analogous to the type of deep-seated (3–5 km deep) intrusive-hosted fracture network system that might support (supercritical) hot dry/wet rock (HDR/HWR) energy extraction. The I-type Takidani Granodiorite comprises: porphyritic granodiorite, porphyritic granite, biotite-hornblende granodiorite, hornblende-biotite granodiorite, biotite-hornblende granite and biotite granite facies; the intrusion has a reverse chemical zonation, characterized by >70 wt% SiO2 at its inferred margin and <67 wt% SiO2 at the core. Fluid inclusion evidence indicates that fractured Takidani Granodiorite at one time hosted a liquid-dominated, convective hydrothermal system, with <380°C, low-salinity reservoir fluids at hydrostatic (mesothermal) pressure conditions. ‘Healed’ microfractures also trapped >600°C, hypersaline (35 wt% NaCleq) fluids of magmatic origin, with inferred minimum pressures of formation being 600–750 bar, which corresponds to fluid entrapment at 2.4–3.0 km depth. Al-in-hornblende geobarometry indicates that hornblende crystallization occurred at about 1.45 Ma (7.7–9.4 km depth) in the (marginal) eastern Takidani Granodiorite, but later (at 1.25 Ma) and shallower (6.5–7.0 km) near the core of the intrusion. The average rate of uplift across the Takidani Granodiorite from the time of hornblende crystallization has been 5.1–5.9 mm/yr (although uplift was about 7.5 mm/yr prior to 1.2 Ma), which is faster than average uplift rates in the Japan Alps (3 mm/yr during the last 2 million years). A temperature–depth–time window, when the Takidani Granodiorite had potential to host an HDR system, would have been when the internal temperature of the intrusive was cooling from 500°C to 400°C. Taking into account the initial (7.5 mm/yr) rate of uplift and effects of erosion, an optimal temperature–time–depth window is proposed: for 500°C at 1.54–1.57 Ma and 5.2±0.9 km (drilling) depth; and 400°C at 1.36–1.38 Ma and 3.3±0.8 km (drilling) depth, which is within the capabilities of modern drilling technologies, and similar to measured temperature–depth profiles in other active hydrothermal systems (e.g. at Kakkonda, Japan).  相似文献   
2.
3.
4.
Abstract The fossil pinniped record of the North Pacific Ocean includes both Phocidae and Otariidae ( sensu lato ), extends from the Late Oligocene to the Late Pleistocene, is taxonomically diverse, and is constantly becoming more complete owing to additional important discoveries. The earliest and most diverse fossil pinnipeds in the North Pacific are otariids, the phocids not appearing until the latest Pliocene. The theoretical center of otariid pinniped evolutionary history has been considered by some to be in the eastern North Pacific. New materials from the western North Pacific, however, including representatives of the subfamilies Enaliarctinae, Imagotariinae, Odobeninae and Otariinae, indicate that pinniped evolutionary patterns were basin-wide phenomena, and that a more complete record undoubtedly would reveal numerous trans-Pacific distributions. This would be expected considering the distributions of living species. The paucity of fossil Phocidae and their absence from pre-Pliocene deposits are consistent with theories that the family primarily evolved outside the North Pacific.  相似文献   
5.
Cosmic X-rays in the energy range between 0.210 keV were observed with polypropylene window proportional counters on board a sounding rocket. The field of view crossed the galactic plane in the Sgr region and reached galactic latitudes of 50° and –90°. A new soft X-ray source was found in the Aries-Taurus region. The soft X-ray flux from the direction of NGC 1275 was conspicuous, whereas that of Sgr region source were very weak. The distribution of the intensity of diffuse soft X-rays over the scanned region indicates the galactic emission of soft X-rays.  相似文献   
6.
Dense molecular medium plays essential roles in galaxies. As demonstrated by the tight and linear correlation between HCN(1–0) and FIR luminosities among star-forming galaxies, from very nearby to high-z ones, the observation of a dense molecular component is indispensable to understand the star formation laws in galaxies. In order to obtain a general picture of the global distributions of dense molecular medium in normal star-forming galaxies, we have conducted an extragalactic CO(3–2) imaging survey of nearby spiral galaxies using the Atacama Submillimeter Telescope Experiment (ASTE). From the survey (ADIoS; ASTE Dense gas Imaging of Star-forming galaxies), CO(3–2) images of M 83 and NGC 986 are presented. Emphasis is placed on the correlation between the CO(3–2)/CO(1–0) ratio and the star formation efficiency in galaxies. In the central regions of some active galaxies, on the other hand, we often find enhanced or overluminous HCN(1–0) emission. The HCN(1–0)/CO(1–0) and HCN(1–0)/HCO+(1–0) intensities are often enhanced up to ∼0.2–0.3 and ∼2–3, respectively. Such elevated ratios have never been observed in the nuclear starburst regions. One possible explanation for these high HCN(1–0)/CO(1–0) and HCN(1–0)/HCO+(1–0) ratios is X-ray induced chemistry in X-ray dominated regions (XDRs), i.e., the overabundance of the HCN molecule in the X-ray irradiated dense molecular tori. If this view is true, the known tight correlation between HCN(1–0) and the star-formation rate breaks in the vicinity of active nuclei. Although the interpretation of these ratios is still an open question, these ratios have a great potential for a new diagnostic tool for the energy sources of dusty galaxies in the ALMA era because these molecular lines are free from dust extinction.  相似文献   
7.
Two silicate-rich dust layers were found in the Dome Fuji ice core in East Antarctica, at Marine Isotope Stages 12 and 13. Morphologies, textures, and chemical compositions of constituent particles reveal that they are high-temperature melting products and are of extraterrestrial origin. Because similar layers were found ~ 2000 km east of Dome Fuji, at EPICA (European Project for Ice Coring in Antarctica)-Dome C, particles must have rained down over a wide area 434 and 481 ka. The strewn fields occurred over an area of at least 3 × 106 km2. Chemical compositions of constituent phases and oxygen isotopic composition of olivines suggest that the upper dust layer was produced by a high-temperature interaction between silicate-rich melt and water vapor due to an impact explosion or an aerial burst of a chondritic meteoroid on the inland East Antarctic ice sheet. An estimated total mass of the impactor, on the basis of particle flux and distribution area, is at least 3 × 109 kg. A possible parent material of the lower dust layer is a fragment of friable primitive asteroid or comet. A hypervelocity impact of asteroidal/cometary material on the upper atmosphere and an explosion might have produced aggregates of sub-μm to μm-sized spherules. Total mass of the parent material of the lower layer must exceed 1 × 109 kg. The two extraterrestrial horizons, each a few millimeters in thickness, represent regional or global meteoritic events not identified previously in the Southern Hemisphere.  相似文献   
8.
Chemical and isotopic compositions of the Acropora nobilis skeleton were analyzed at various spatial resolutions to investigate the mechanism by which elements are incorporated into the skeleton. Chemical and isotopic profiles along growth axes of axial and radial corallites did not show seasonal variation, with the exception of the δ18O profile of the axial corallite. Detailed observations of the skeletal structure revealed that the skeletal density increased with distance from the tip because secondarily precipitated aragonite (here called the “infilling” skeleton) filled pore spaces in the “framework” skeleton. Microscale element analyses revealed that main part of the infilling skeleton had lower Mg/Ca and higher Sr/Ca and U/Ca than the framework skeleton. At microscale, Sr/Ca and U/Ca were positively correlated with each other, and negatively correlated with Mg/Ca but only weakly. The results showed that the infilling skeleton differed significantly from the adjacent framework skeleton in terms of not only formation chronology but also chemical composition, and that the bulk composition was influenced by the infilling/framework skeletal ratio. In order to use the Acropora skeleton as a paleoclimate archive, the relationship between environmental factors and the chemical composition of each skeletal component needs to be established.  相似文献   
9.
In order to understand the metal concentrations in Japanese eel Anguilla japonica, nine elements were analyzed in the livers of different migratory types of eels collected from Tokushima region (south Japan). Migratory types were defined by examining the Sr:Ca ratio in otoliths. The results showed that there were significant differences in V, Cr, Cd, and Pb concentrations among the migratory types. Mature-sea-eels show a higher risk of metal accumulation than other migratory types of eels, and the concentrations of Mn, Cu, and Zn in mature eels were significantly higher than those in immature eels. The study suggests that the eel liver is a valuable bioindicator for trace metals; however, when using the eel as a bioindicator to reveal the pollutants in aquatic systems, life history analysis should be carried out for accurate interpretation of the results.  相似文献   
10.
Because the Khumbu Himal of the Nepal Himalayas lacks long-term climate records from weather stations, mountain permafrost degradation serves as an important indicator of climate warming. In 1973, the permafrost lower limit was estimated to be 5200–5300 m above sea level (ASL) on southern-aspect slopes in this region. Using ground-temperature measurements, we examined the mountain permafrost lower limit on slopes with the same aspect in 2004. The results indicate that the permafrost lower limit was 5400–5500 m ASL in 2004. The permafrost lower limit was estimated to be 5400 to 5500 m on slopes with a southern aspect in the Khumbu Himal in 1991 using seismic reflection soundings. Thus, it is possible that the permafrost lower limit has risen 100–300 m between 1973 and 1991, followed by a stable limit of 5400 to 5500 m over the last decade. An increase in mean annual air temperature of approximately 0.2 to 0.4 °C from the 1970s to the 1990s has indicated a rise in the permafrost lower limit of 40 to 80 m at the Tibetan Plateau. The rise in the mountain permafrost lower limit in the Khumbu Himal exceeds that of the Tibetan Plateau, suggesting the possibility of greater climate warming in the Khumbu Himal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号