首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
天文学   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
An extensive set of molecular hydrogen observations of centers of southern infrared galaxies is presented. Our data are combined with published infrared and radio observations to investigate the relationship between nuclear and circumnuclear activity. We convert the observational data to absolute luminosities, by applying the known distances. The resulting dataset covers several decades in luminosity for the various parameters, which observe fairly tight correlations. The parameters of our (power law) fits are, at the level of accuracy achieved, not dependent on the type of nuclear activity: while the dataset comprises a mixture of alleged Seyfert, Liner & starburst galaxies, single fits match the complete sample well enough. In particular, non-thermal nuclei (AGN) present in some of the galaxies in the current sample, do not stand out in the parameters we investigated. The absence of a significant dependence on the nuclear type is consistent with the idea that the ever present starbursts energetically dominate a possible ‘AGN in a dusty environment’-component in most galaxy nuclei with infrared excesses.The size of the H2 emitting region is found to be proportional to the square root of the 21 cm radio continuum luminosity. The excitation of the circumnuclear H2 is dominated by shocks. If the H2 extent marks the size of an inner cavity in the dense molecular material surrounding a galaxy nucleus and the radio luminosity is proportional to the mechanical luminosity of (circum)nuclear winds. This result then indicates that the cavity size occurs at constant pressure in the sample galaxies, in accordance with the superwind model by Heckman et al. (1990) [ApJS, 74, 833]. Our results, together with those obtained by others, thus suggest that luminosities and size scales of excited gas associated with active nuclei are dominated by the mechanical energy input. Given the difficulties of uniquely establishing the presence of an AGN, we cannot exclude that (a large fraction of the) infrared luminous galaxies procure part of their radiated energy through accretion onto a massive dark object.F. Duccio Macchetto  相似文献   
2.
We present 10-μm ISO -SWS and Australia Telescope Compact Array observations of the region in the cluster Wd1 in Ara centred on the B[e] star Ara C. An ISO -SWS spectrum reveals emission from highly ionized species in the vicinity of the star, suggesting a secondary source of excitation in the region. We find strong radio emission at both 3.5 and 6.3 cm, with a total spatial extent of over 20 arcsec. The emission is found to be concentrated in two discrete structures, separated by ∼ 14 arcsec. The westerly source is resolved, with a spectral index indicative of thermal emission. The easterly source is clearly extended and non-thermal (synchrotron) in nature. Positionally, the B[e] star is found to coincide with the more compact radio source, while the southerly lobe of the extended source is coincident with Ara A, an M2 I star. Observation of the region at 10 μm reveals strong emission with an almost identical spatial distribution to the radio emission. Ara C is found to have an extreme radio luminosity in comparison with prior radio observations of hot stars such as O and B supergiants and Wolf–Rayet stars, given the estimated distance to the cluster. An origin in a detatched shell of material around the central star is therefore suggested; however given the spatial extent of the emission, such a shell must be relatively young (τ ∼ 103 yr). The extended non-thermal emission associated with the M star Ara A is unexpected; to the best of our knowledge this is a unique phenomenon. SAX (2–10 keV) observations show no evidence of X-ray emission, which might be expected if a compact companion were present.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号