首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
地质学   1篇
天文学   16篇
  2018年   3篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
K. Tsiganis  H. Varvoglis 《Icarus》2003,166(1):131-140
A population of 23 asteroids is currently observed in a very unstable region of the main belt, the 7/3 Kirkwood gap. The small size of these bodies—with the notable exception of (677) Aaltje (∼30 km)—as well as the computation of their dynamical lifetimes (3<TD<172 Myr) shows that they cannot be on their primordial orbits, but were recently injected in the resonance. The distribution of inclinations appears to be bimodal, the two peaks being close to 2° and 10°. We argue that the resonant population is constantly being replenished by the slow leakage of asteroids from both the Koronis (I∼2°) and Eos (I∼10°) families, due to the drift of their semi-major axes, caused by the Yarkovsky effect. Assuming previously reported values for the Yarkovsky mean drift rate, we calculate the flux of family members needed to sustain the currently observed population in steady state. The number densities with respect to semi-major axis of the observed members of both families are in very good agreement with our calculations. The fact that (677) Aaltje is currently observed in the resonance is most likely an exceptional event. This asteroid should not be genetically related to any of the above families. Its size and the eccentricity of its orbit suggest that the Yarkovsky effect should have been less efficient in transporting this body to the resonance than close encounters with Ceres.  相似文献   
2.
It has recently been shown that Jupiter Trojans may exhibit chaotic behavior, a fact that has put in question their presumed long term stability. Previous numerical results suggest a slow dispersion of the Trojan swarms, but the extent of the ‘effective’ stability region in orbital elements space is still an open problem. In this paper, we tackle this problem by means of extensive numerical integrations. First, a set of 3,200 fictitious objects and 667 numbered Trojans is integrated for 4 Myrs and their Lyapunov time, TL, is estimated. The ones following chaotic orbits are then integrated for 1 Gyr, or until they escape from the Trojan region. The results of these experiments are presented in the form of maps of TLand the escape time, TE, in the space of proper elements. An effective stability region for 1 Gyr is defined on these maps, in which chaotic orbits also exist. The distribution of the numbered Trojans follows closely the TE=1 Gyr level curve, with 86% of the bodies lying inside and 14% outside the stability region. This result is confirmed by a 4.5 Gyr integration of the 246 chaotic numbered Trojans, which showed that 17% of the numbered Trojans are unstable over the age of the solar system. We show that the size distributions of the stable and unstable populations are nearly identical. Thus, the existence of unstable bodies should not be the result of a size-dependent transport mechanism but, rather, the result of chaotic diffusion. Finally, in the large chaotic region that surrounds the stability zone, a statistical correlation between TLandTE is found.  相似文献   
3.
4.
In this paper we present a comprehensive analysis of the dynamics in the region of the (3556) Lixiaohua asteroid family. The family lies in a particularly interesting region of the phase space, crossed by several two-body and three-body mean motion resonances. Also, members of this family can have close encounters with large asteroids, such as Ceres. We have identified the mean motion resonances which contribute to the long-term dynamical evolution of the family and our results confirm that the members of this family can be classified into a number of groups, exhibiting different dynamical behavior. We show for the first time that in the Lixiaohua region, apart from the chaotic diffusion in proper eccentricity and inclination (e p and I p ), there is at least one extended chaotic zone where several resonances overlap, thus giving rise to chaotic diffusion in proper semi-major axis (a p ) as well. Using a code of Monte Carlo type, we simulate the evolution of the family, according to the model which combines the chaotic diffusion (in a p , e p and I p ), Yarkovsky/YORP thermal effect and random walk in a p due to the close encounters with massive asteroids. These simulations show that all these effects should be taken into account in order to accurately explain the observed distribution of family members in the space of proper elements, although a “minimal” model that accounts for chaotic diffusion in (e p , I p ), Yarkovsky-induced drift in a p and random walk in a p due to the close encounters with the most massive asteroids is enough to grossly characterize the shape of the family.  相似文献   
5.
We consider a two-planet system migrating under the influence of dissipative forces that mimic the effects of gas-driven (Type II) migration. It has been shown that, in the planar case, migration leads to resonant capture after an evolution that forces the system to follow families of periodic orbits. Starting with planets that differ slightly from a coplanar configuration, capture can, also, occur and, additionally, excitation of planetary inclinations has been observed in some cases. We show that excitation of inclinations occurs, when the planar families of periodic orbits, which are followed during the initial stages of planetary migration, become vertically unstable. At these points, vertical critical orbits may give rise to generating stable families of \(3D\) periodic orbits, which drive the evolution of the migrating planets to non-coplanar motion. We have computed and present here the vertical critical orbits of the \(2/1\) and \(3/1\) resonances, for various values of the planetary mass ratio. Moreover, we determine the limiting values of eccentricity for which the “inclination resonance” occurs.  相似文献   
6.
We study the secular dynamics of lunar orbiters, in the framework of high-degree gravity models. To achieve a global view of the dynamics, we apply a frequency analysis (FA) technique which is based on Prony’s method. This allows for an extensive exploration of the eccentricity ( $e$ )—inclination ( $i$ ) space, based on short-term integrations ( $\sim $ 8 months) over relatively high-resolution grids of initial conditions. Different gravity models are considered: 3rd, 7th and 10th degree in the spherical harmonics expansion, with the main perturbations from the Earth being added. Since the dynamics is mostly regular, each orbit is characterised by a few parameters, whose values are given by the spectral decomposition of the orbital elements time series. The resulting frequency and amplitude maps in ( $e_0,i_0$ ) are used to identify the dominant perturbations and deduce the “minimum complexity” model necessary to capture the essential features of the long-term dynamics. We find that the 7th degree zonal harmonic ( $J_7$ term) is of profound importance at low altitudes as, depending on the initial secular phases, it can lead to collision with the Moon’s surface within a few months. The 3rd-degree non-axisymmetric terms are enough to describe the deviations from the 1 degree-of-freedom zonal problem; their main effect is to modify the equilibrium value of the argument of periselenium, $\omega $ , with respect to the “frozen” solution ( $\omega =\pm 90^{\circ }, \forall \Omega $ , where $\Omega $ is the nodal longitude). Finally, we show that using FA on a fine grid of initial conditions, set around a suitably chosen ‘first guess’, one can compute an accurate approximation of the initial conditions of a periodic orbit.  相似文献   
7.
We study the problem of critical inclination orbits for artificial lunar satellites, when in the lunar potential we include, besides the Keplerian term, the J 2 and C 22 terms and lunar rotation. We show that, at the fixed points of the 1-D averaged Hamiltonian, the inclination and the argument of pericenter do not remain both constant at the same time, as is the case when only the J 2 term is taken into account. Instead, there exist quasi-critical solutions, for which the argument of pericenter librates around a constant value. These solutions are represented by smooth curves in phase space, which determine the dependence of the quasi-critical inclination on the initial nodal phase. The amplitude of libration of both argument of pericenter and inclination would be quite large for a non-rotating Moon, but is reduced to <0°.1 for both quantities, when a uniform rotation of the Moon is taken into account. The values of J 2, C 22 and the rotation rate strongly affect the quasi-critical inclination and the libration amplitude of the argument of pericenter. Examples for other celestial bodies are given, showing the dependence of the results on J 2, C 22 and rotation rate.  相似文献   
8.
K. Tsiganis  Z. Kne?evi? 《Icarus》2007,186(2):484-497
The family of (490) Veritas is a young, dynamically heterogeneous asteroid family, located in the outer main belt. As such, it represents a valuable example for studying the effects of chaotic diffusion on the shape of asteroid families. The Veritas family can be decomposed into several groups, in terms of the principal mechanisms that govern the local dynamics, which are analyzed here. A relatively large spread in proper eccentricity is observed, for the members of two chaotic groups. We show that different types of chaos govern the motion of bodies within each group, depending on the extent of overlap among the components of the corresponding resonant multiplets. In particular, one group appears to be strongly diffusive, while the other is not. Studying the evolution of the diffusive group and applying statistical methods, we estimate the age of the family to be τ=(8.7±1.7) Myr. This value is statistically compatible with that of 8.3 Myr previously derived by Nesvorný et al. [Nesvorný, D., Bottke, W.F., Levison, H.F., Dones, L., 2003. Astrophys. J. 591, 486-497], who analyzed the secular evolution of family members on regular orbits. Our methodology, applied here in the case of the Veritas family, can be used to reconstruct the orbital history of other, dynamically complex, asteroid families and derive approximate age estimates for young asteroid families, located in diffusive regions of the main belt. Possible refinements of the method are also discussed.  相似文献   
9.
In a previous work we studied the effects of (I) the J 2 and C 22 terms of the lunar potential and (II) the rotation of the primary on the critical inclination orbits of artificial satellites. Here, we show that, when 3rd-degree gravity harmonics are taken into account, the long-term orbital behavior and stability are strongly affected, especially for a non-rotating central body, where chaotic or collision orbits dominate the phase space. In the rotating case these phenomena are strongly weakened and the motion is mostly regular. When the averaged effect of the Earth’s perturbation is added, chaotic regions appear again for some inclination ranges. These are more important for higher values of semi-major axes. We compute the main families of periodic orbits, which are shown to emanate from the ‘frozen eccentricity’ and ‘critical inclination’ solutions of the axisymmetric problem (‘J 2 + J 3’). Although the geometrical properties of the orbits are not preserved, we find that the variations in e, I and g can be quite small, so that they can be of practical importance to mission planning.  相似文献   
10.
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity \(e'=1\), but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter \(\mu =0.5\) (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to \(\mu \) and \(e'<1\). Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号