首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
天文学   9篇
  2009年   1篇
  2005年   1篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有9条查询结果,搜索用时 51 毫秒
1
1.
We discuss the feasibility of using the coherent electric field in crystal as a means for gamma-ray astronomy. At 100 GeV, pair production is enhanced along the crystalline axis. However, the expected celestial gamma-ray flux at this energy is insufficient for this technique to be viable with a conventional-size satellite detector.  相似文献   
2.
The linear polarization of the Crab pulsar and its close environment was derived from observations with the high-speed photopolarimeter Optical Pulsar TIMing Analyser at the 2.56-m Nordic Optical Telescope in the optical spectral range (400–750 nm). Time resolution as short as 11 μs, which corresponds to a phase interval of 1/3000 of the pulsar rotation, and high statistics allow the derivation of polarization details never achieved before. The degree of optical polarization and the position angle correlate in surprising details with the light curves at optical wavelengths and at radio frequencies of 610 and 1400 MHz. Our observations show that there exists a subtle connection between presumed non-coherent (optical) and coherent (radio) emissions. This finding supports previously detected correlations between the optical intensity of the Crab and the occurrence of giant radio pulses. Interpretation of our observations requires more elaborate theoretical models than those currently available in the literature.  相似文献   
3.
The Solar Maximum Mission Gamma Ray Experiment (SMM GRE) utilizes an actively shielded, multicrystal scintillation spectrometer to measure the flux of solar gamma rays. The instrument provides a 476-channel pulse height spectrum (with energy resolution of 7% at 662 keV) every 16.38 s over the energy range 0.3–9 MeV. Higher time resolution (2 s) is available in three windows between 3.5 and 6.5 MeV to study prompt gamma ray line emission at 4.4 and 6.1 MeV. Gamma ray spectral analysis can be extended to 15 MeV on command. Photons in the energy band from 300–350 keV are recorded with a time resolution of 64 ms. A high energy configuration also gives the spectrum of photons in the energy range from 10–100 MeV and the flux of neutrons 20 MeV. Both have a time resolution of 2 s. Auxiliary X-ray detectors will provide spectra with 1-sec time resolution over the energy range of 10–140 keV. The instrument is designed to measure the intensity, energy, and Doppler shift of narrow gamma ray lines as well as the intensity of extremely broadened lines and the photon continuum. The main objective is to use this time and spectral information from both nuclear gamma ray lines and the photon continuum in a direct study of the dynamics of the solar flare/particle acceleration phenomena.  相似文献   
4.
The EGRET telescope aboard the NASA Compton Gamma-Ray Observatory ( CGRO ) has repeatedly detected 3EG J1835+5918, a bright and steady source of high-energy gamma-ray emission which has not yet been identified. The absence of any likely counterpart for a bright gamma-ray source located 25° off the Galactic plane initiated several attempts of deep observations at other wavelengths. We report on counterparts in X-rays on a basis of a 60-ks ROSAT HRI image. In order to conclude on the plausibility of the X-ray counterparts, we reanalysed data from EGRET at energies above 100 MeV and above 1 GeV, including data up to CGRO observation cycle 7. The gamma-ray source location represents the latest and probably the final positional assessment based on EGRET data. We especially address the question of flux and spectral variability, here discussed using the largest and most homogeneous data set available at high-energy gamma-rays for many years. The results from X-ray and gamma-ray observations were used in a follow-up optical identification campaign at the 2.2-m Guillermo Haro Telescope at Cananea, Mexico. VRI imaging has been performed at the positions of all of the X-ray counterpart candidates, and spectra were taken where applicable. The results of the multifrequency identification campaign toward this enigmatic unidentified gamma-ray source are given, especially on the one object which might be associated with the gamma-ray source 3EG J1835+5918. This object has the characteristics of an isolated neutron star and possibly of a radio-quiet pulsar.  相似文献   
5.
The large flare of 11 June 1991 (GOES class X12) was detected by the Total Absorption Shower Counter (TASC) segment of the EGRET gamma-ray telescope on board the Compton Gamma Ray Observatory. Significant gamma-ray emission was observed over the entire energy range to which the TASC was sensitive –1 to 140 MeV. Several phases were identified which showed major changes in the intensity and spectral shape of the flare gamma-rays. Furthermore, a 'delayed' phase during which a response consistent with the detection of energetic neutrons and pion-decay gamma-rays was seen, implying a qualitative change in the spectral shape of the accelerated ion spectrum. The similarity of the characteristics of this delayed phase (pion and energetic neutron production) to those in other large flares hint at a common particle acceleration mechanism.  相似文献   
6.
OPTIMA is a small, versatile high-speed photometer which is primarily intended for time resolved observations of young high energy pulsars at optical wavelengths. The detector system consists of eight fiber fed photon counters based on avalanche photodiodes, a GPS timing receiver, an integrating CCD camera to ensure the correct pointing of the telescope and a computerized control unit. Since January 1999 OPTIMA proves its scientific potential by measuring a very detailed light-curve of the Crab Pulsar as well as by observing cataclysmic variable stars on very short timescales. In this article we describe the design of the detector system focussing on the photon counting units and the software control which correlates the detected photons with the GPS timing signal. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
We present a detailed analysis of the high-energy gamma-ray source 2EG J0008+7307. The source has a steady flux and a hard spectrum, softening above 2 GeV. The properties of the gamma-ray source are suggestive of emission from a young pulsar in the spatially coincident CTA 1 supernova remnant, which has recently been found to have a non-thermal X-ray plerion. Our 95 per cent uncertainty contour around the > 1 GeV source position includes the point-like X-ray source at the centre of the plerion. We propose that this object is a young pulsar and is the most likely counterpart of 2EG J0008+7307.  相似文献   
8.
MEGA, short for Medium Energy Gamma-ray Astronomy, is the development of a new technology telescope in the energy band 0.4--50\ MeV. The wide energy range of MEGA, which spans nuclear γ-ray lines and energetic continuum spectra, the large field of view, and the capacity for polarimetry enables unique investigations into cosmic nucleosynthesis, particle accelerators around compact objects, and explosive high-energy events. We describe the development and tests of a prototype detector. Results from laboratory tests using radioactive sources and from a beam test calibration are presented and an outlook of a potential space mission is sketched.  相似文献   
9.
OPTIMA is a small, versatile high-speed photometer which is primarily intended for time resolved observations of young high energy pulsars at optical wavelengths. The detector system consists of eight fiber fed photon counters based on avalanche photodiodes, a GPS timing receiver, an integrating CCD camera to ensure the correct pointing of the telescope and a computerized control unit. Since January 1999 OPTIMA proves its scientific potential by measuring a very detailed light-curve of the Crab Pulsar as well as by observing cataclysmic variable stars on very short timescales. In this article we describe the design of the detector system focussing on the photon counting units and the software control which correlates the detected photons with the GPS timing signal.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号