首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   5篇
地质学   5篇
天文学   1篇
综合类   1篇
自然地理   1篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   3篇
  1992年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有13条查询结果,搜索用时 298 毫秒
1.
It is shown in this paper how to build a canonical transformation of variables, so that the eccentric anomaly becomes the new independent variable. In the case of eccentric elliptical orbits it changes the equations of motion so, that they can be integrated analytically to any order of approximation comparatively easy.  相似文献   
2.
Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by group diversity, evenness, relative abundance and biovolume. Sixty-six taxa were identified in addition to eight potentially harmful algal genera including Gymnodinium sp. Phytoplankton group diversity was lowest at Vermillion Bay in February 2008, but otherwise ranged between 2.16 and 3.40. Phytoplankton evenness was also lowest at Vermillion Bay in February 2008, but otherwise ranged between 0.54 and 0.77. Dissolved oxygen increased with increased biovolume (R2 = 0.85, p < 0.001) and biovolume decreased with increased light attenuation (R2 = 0.34, p = 0.007), which supported the importance of light in regulating oxygen dynamics. Diatoms were dominant in relative abundance and biovolume at almost all stations and all cruises. Brunt-V?is?l? frequency was used as a measure of water column stratification and was negatively correlated (p = 0.02) to diatom relative percent total abundance.  相似文献   
3.
We examined the effects of freshwater flow and light availability on phytoplankton biomass and production along the Louisiana continental shelf in the region characterized by persistent spring–summer stratification and widespread summer hypoxia. Data were collected on 7 cruises from 2005 to 2007, and spatially-averaged estimates of phytoplankton and light variables were calculated for the study area using Voronoi polygon normalization. Shelf-wide phytoplankton production ranged from 0.47 to 1.75 mg C m−2 d−1 across the 7 cruises. Shelf-wide average light attenuation (kd) ranged from 0.19–1.01 m−1 and strongly covaried with freshwater discharge from the Mississippi and Atchafalaya Rivers (R2=0.67). Interestingly, we observed that the euphotic zone (as defined by the 1% light depth) extended well below the pycnocline and to the bottom across much of the shelf. Shelf-wide average chlorophyll a (chl a) concentrations ranged from 1.4 to 5.9 mg m−3 and, similar to kd, covaried with river discharge (R2=0.83). Also, chl a concentrations were significantly higher in plume versus non-plume regions of the shelf. When integrated through the water-column, shelf-wide average chl a ranged from 26.3 to 47.6 mg m−2, but did not covary with river discharge, nor were plume versus non-plume averages statistically different. The high integrated chl a in the non-plume waters resulted from frequent sub-pycnocline chl a maxima. Phytoplankton production rates were highest in the vicinity of the Mississippi River bird's foot delta, but as with integrated chl a were not statistically different in plume versus non-plume waters across the rest of the shelf. Based on the vertical distribution of light and chl a, a substantial fraction of phytoplankton production occurred below the pycnocline, averaging from 25% to 50% among cruises. These results suggest that freshwater and nutrient inputs regulate shelf-wide kd and, consequently, the vertical distribution of primary production. The substantial below-pycnocline primary production we observed has not been previously quantified for this region, but has important implications about the formation and persistence of hypoxia on the Louisiana continental shelf.  相似文献   
4.
Journal of Seismology - Seismologists found a significant deterioration in station quality after installation of wind turbines (WTs), which led to conflicts between WT operators and seismic...  相似文献   
5.
We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by vegetation, physiographic features and soil properties. The Snowpack Telemetry and National Weather Service Cooperative Observer Program weather station networks were used to approximate the climate of sample plots. We analysed vegetation and environmental data using clustering, ordination, classification, and ANOVA techniques to reveal environmental gradients affecting a broad vegetation pattern and discriminate these gradients. The specific objective was to assess and classify the response of the complex vegetation to those environmental factors operating at a coarse-scale climatic level. Ordination revealed the dominant role of regional, altitude-based climate in the area. Based on vegetation physiognomy, represented by five tree species, climatic data and taxonomic classification of zonal soils, we identified two vegetation geo-climatic zones: (1) a montane zone, with Rocky Mountain juniper and Douglas-fir; and (2) a subalpine zone, with Engelmann spruce and subalpine fir as climatic climax species. Aspen was excluded from the zonation due to its great ecological amplitude. We found significant differences between the zones in regional climate and landformgeomorphology/soils. Regional climate was represented by elevation, precipitation, and air and soil temperatures; and geomorphology by soil types. This coarsescale vegetation geo-climatic zonation provides a framework for a comprehensive ecosystem survey, which is missing in the central Rocky Mountains of the United States. The vegetationgeoclimatic zonation represents a conceptual improvement on earlier classifications. This framework explicitly accounts for the influence of the physical environment on the distribution of vegetation within a complex landscape typical of the central Rocky Mountains and in mountain ranges elsewhere.  相似文献   
6.
7.
This paper examines the results of wind tunnel experiments on models of nabkha, based on those studied in the Hotan River basin. Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation. Artificial vegetation of simulated Tamarix spp. was put on top of each model. Parameters of the shape, including height, width, and diameter of vegetated semi-spherical and conical nabkha, were measured in the Hotan River basin. Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6–14 m/s) to study the influence of vegetation on airflow patterns. Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds, retards airflow over the sand mounds, reduces airflow energy, eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope. Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha. This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area. The existence of vegetation makes fine materials in wind-sand flow to possibly deposit, and promotes nabkha formation. The imitative flow patterns of different morphological nabkhas have also been verified by on-site observation in the river basin. __________ Translated from Journal of Desert Research, 2007, 27(1): 15–19 [译自: 中国沙漠]  相似文献   
8.
Diffracted waves carry high-resolution information that can help interpreting fine structural details at a scale smaller than the seismic wavelength. However, the diffraction energy tends to be weak compared to the reflected energy and is also sensitive to inaccuracies in the migration velocity, making the identification of its signal challenging. In this work, we present an innovative workflow to automatically detect scattering points in the migration dip angle domain using deep learning. By taking advantage of the different kinematic properties of reflected and diffracted waves, we separate the two types of signals by migrating the seismic amplitudes to dip angle gathers using prestack depth imaging in the local angle domain. Convolutional neural networks are a class of deep learning algorithms able to learn to extract spatial information about the data in order to identify its characteristics. They have now become the method of choice to solve supervised pattern recognition problems. In this work, we use wave equation modelling to create a large and diversified dataset of synthetic examples to train a network into identifying the probable position of scattering objects in the subsurface. After giving an intuitive introduction to diffraction imaging and deep learning and discussing some of the pitfalls of the methods, we evaluate the trained network on field data and demonstrate the validity and good generalization performance of our algorithm. We successfully identify with a high-accuracy and high-resolution diffraction points, including those which have a low signal to noise and reflection ratio. We also show how our method allows us to quickly scan through high dimensional data consisting of several versions of a dataset migrated with a range of velocities to overcome the strong effect of incorrect migration velocity on the diffraction signal.  相似文献   
9.
A nabkha is a vegetated sand mound, which is typical of the aeolian landforms found in the Hotan River basin in Xinjiang, China. This paper compares the results of a series of wind tunnel experiments with an on-site field survey of nabkhas in the Hotan River basin of Xinjiang. Wind tunnel experiments were conducted on semi-spherical and conical sand mounds without vegetation or shadow dunes. Field mounds were 40 times as large as the size of the wind tunnel models. In the wind tunnel experiments, five different velocities from 6 to 14 m/s were selected and used to model the wind flow pattern over individual sand mound using clean air without additional sand. Changes in the flow pattern at different wind speeds resulted in changes to the characteristic structure of the nabkha surface. The results of the experiments for the semi-spherical sand mound at all wind velocities show the formation of a vortex at the bottom of the upwind side of the mound that resulted in scouring and deposition of a crescentic dune upwind of the main mound. The top part of the sand mound is strongly eroded. In the field, these dunes exhibited the same scouring and crescentic dune formation and the eroded upper surface was often topped by a layer of peat within the mound suggesting destroyed vegetation due to river channel migration or by possible anthropogenic forces such as fuel gathering, etc. Experiments for the conical mounds exhibit only a small increase in velocity on the upwind side of the mound and no formation of a vortex at the bottom of the upwind side. Instead, a vortex formed on the leeward side of the mound and overall, no change occurred in the shape of the conical mound. In the field, conical mounds have no crescentic dunes on the upwind side and no erosion at the top exposed below peat beds. Therefore, the field and laboratory experiments show that semi-spherical and conical sand mounds respond differently to similar wind conditions with different surface configuration and development of crescent-shaped upwind deposits when using air devoid of additional sediment. __________ Translated from Journal of Desert Research, 2007, 27(1): 9–14 [译自:中国沙漠]  相似文献   
10.
In spite of various actions, the implementation of GIS (geographic information systems) in German schools is still very low. In the presented research, teaching experts as well as teaching novices were presented with empirically based constraints for implementation stemming from an earlier survey. In the process of various group discussions, the participants developed ideas for overcoming the constraints in the field of continuing teacher education among others. These ideas were used to create empirically based strategies for the future design of training activities in continuing education of teachers while taking these constraints into account. These strategies were later validated externally by comparing them to empirical findings on effects of training activities in continuing teacher education in general and empirical findings on GIS implementation from other studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号