首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
天文学   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Schmieder  B.  Fang  C.  Harra-Murnion  L.K. 《Solar physics》1998,182(2):447-457
A thermal subflare occurring on 27 October 1993 was observed during a multi-wavelength campaign with the Yohkoh spacecraft and the Multi-channel Subtractive Double-Pass spectrograph (MSDP) at Pic du Midi. The various instruments provided us with 2-D H spectra, X-ray spectra and X-ray images. A non-LTE computation (including chromospheric condensation) was carried out to determine the dynamic parameters of the flaring chromosphere. By combining these results with the Yohkoh data, we illustrate that momentum is balanced between the upflowing plasma and the downflowing cool plasma during the flare. This result is consistent with the evaporation model.  相似文献   
2.
McDonald  L.  Harra-Murnion  L.K.  Culhane  J.L. 《Solar physics》1999,185(2):323-350
We analyse four solar flares which have energetic hard X-ray emissions, but unusually low soft X-ray flux and GOES class (C1.0–C5.5). These are compared with two other flares that have soft and hard X-ray emission consistent with a generally observed correlation that shows increasing hard X-ray accompanied by increasing soft X-ray flux. We find that in the four small flares only a small percentage of the nonthermal electron beam energy is deposited in a location where the heating rate of the electron beam exceeds the radiative cooling rate of the ambient plasma. Most of the beam energy is subsequently radiated away into the cool chromosphere and so cannot power chromospheric evaporation thus reducing the soft X-ray emission. We also demonstrate that in the four small flares the nonthermal electron beam energy is insufficient to power the soft X-ray emitting plasma. We deduce that an additional energy source is required, and this could be provided by a DC-electric field (where quasi-static electric field channels in the coronal loops accelerate electrons, and those electrons with velocity below a critical velocity will heat the ambient plasma via Joule heating) in preference to a loop-top thermal source (where heat flux deposited in the corona is conducted along magnetic field lines to the chromosphere, heating the coronal plasma and giving rise to further chromospheric evaporation).  相似文献   
3.
Yohkoh and the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) jointly observed two brightenings in active region NOAA 7981 on 6 August 1996. Combining the UV data from CDS with information from the high time resolution coronal images obtained with the Soft X-ray Telescope (SXT) on Yohkoh, provides us with important information on the relationship between the transition region and corona. Our observations show that cool plasma (Te = 2.2 x 10-5 K) can lie at the same altitude as the hot coronal plasma (Te = 1–4 x 106 K). The lower temperature structure is not formed from the cooling of the hotter coronal loop. We are also able to observe a low temperature cut-off of Te = 1–4 x 106 K for a loop which repeatedly brightened over the period of approximately one day.  相似文献   
4.
In selected flares that occurred in AR 7260, we have studied the geometry of the brightest soft X-ray loop by tracing it on an image. Even under the assumption that the loop is contained in a plane, it is clear that a single image does not permit us to determine the full geometry. It only provides possible loop shapes as a function of the inclination angle of the loop plane with respect to the vertical. However, all the loops that reproduce the observed appearance give the same direction of increasing height as projected on to the image plane. This direction is compared with two relevant observations. Based on 2-D reconnection models that involve a cusp configuration, it is expected that the soft X-ray loop top source moves upward with time and that a higher temperature region exists above the loop top. Several flares are found to contradict these predictions, presumably implying the inadequacy of the models. Lastly we discuss a possibility of constraining the inclination angle (and hence the loop shape) with spatially-unresolved soft X-ray line spectra which are Doppler-shifted due to plasma upflows.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号