首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
大气科学   2篇
地质学   6篇
海洋学   2篇
天文学   2篇
  2013年   1篇
  2006年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1980年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有12条查询结果,搜索用时 515 毫秒
1.
Abstract— Lunar meteorite Dar al Gani 262 (DG 262)—found in the Libyan part of the Sahara—is a mature, anorthositic regolith breccia with highland affinities. The origin from the Moon is undoubtedly indicated by its bulk chemical composition; radionuclide concentrations; noble gas, N, and O isotopic compositions; and petrographic features. Dar al Gani 262 is a typical anorthositic highland breccia similar in mineralogy and chemical composition to Queen Alexandra Range (QUE) 93069. About 52 vol% of the studied thin sections of Dar al Gani 262 consist of fine-grained(100 μm) constituents, and 48 vol% is mineral and lithic clasts and impact-melt veins. The most abundant clast types are feldspathic fine-grained to microporphyritic crystalline melt breccias (50.2 vol%; includes recrystallized melt breccias), whereas mafic crystalline melt breccias are extremely rare (1.4 vol%). Granulitic lithologies are 12.8 vol%, intragranularly recrystallized anorthosites and cataclastic anorthosites are 8.8 and 8.2 vol%, respectively, and (devitrified) glasses are 2.7 vol%. Impact-melt veins (5.5 vol% of the whole thin sections) cutting across the entire thin section were probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Mafic crystalline melt breccias are very rare in Dar al Gani 262 and are similar in abundance to those in QUE 93069. The extremely low abundance of mafic components and the bulk composition may constrain possible areas of the Moon from which the breccia was derived. The source area of Dar al Gani 262 must be a highland terrain lacking significant mafic impact melts or mare components. On the basis of radionuclide activities, an irradiation position of DG 262 on the Moon at a depth of 55–85 g/cm3and a maximum transit time to Earth <0.15 Ma is suggested. Dar al Gani 262 contains high concentrations of solar-wind-implanted noble gases. The isotopic abundance ratio 40Ar/36Ar < 3 is characteristic of lunar soils. The terrestrial weathering of DG 262 is reflected by the occurrence of fractures filled with calcite and by high concentrations of Ca, Ba, Cs, Br, and As. There is also a large amount of terrestrial C and some N in the sample, which was released at low temperatures during stepped heating. High concentrations of Ni, Co, and Ir indicate a significant meteoritic component in the lunar surface regolith from which DG 262 was derived.  相似文献   
2.
The development of soft‐sediment deformation structures in clastic sediments is now reasonably well‐understood but their development in various deltaic subenvironments is not. A sedimentological analysis of a Pleistocene (ca 13·1 to 15 10Be ka) Gilbert‐type glaciolacustine delta with gravity‐induced slides and slumps in the Mosty‐Danowo tunnel valley (north‐western Poland) provides more insight, because the various soft‐sediment deformation structures in these deposits were considered in the context of their specific deltaic subenvironment. The sediments show three main groups of soft‐sediment deformation structures in layers between undeformed sediments. The first group consists of deformed cross‐bedding (inclined, overturned, recumbent, complex and sheath folds), large‐scale folds (recumbent and sheath folds) and pillows forming plastic deformations. The second group comprises pillar structures (isolated and stress), clastic dykes with sand volcanoes and clastic megadykes as examples of water‐escape structures. The third group consists of faults (normal and reverse) and extensional fissures (small fissures and neptunian dykes). Some of the deformations developed shortly after deposition of the deformed sediment, other structures developed later. This development must be ascribed to hydroplastic movement in a quasi‐solid state, and due to fluidization and liquefaction of the rapidly deposited, water‐saturated deltaic sediments. The various types of deformations were triggered by: (i) a high sedimentation rate; (ii) erosion (by wave action or meltwater currents); and (iii) ice‐sheet loading and seasonal changes in the ablation rate. Analysis of these triggers, in combination with the deformational mechanisms, have resulted – on the basis of the spatial distribution of the various types of soft‐sediment deformation structures in the delta under study – in a model for the development of soft‐sediment deformation structures in the topsets, foresets and bottomsets of deltas. This analysis not only increases the understanding of the deformation processes in both modern and ancient deltaic settings but also helps to distinguish between the various subenvironments in ancient deltaic deposits.  相似文献   
3.
The metastable, high-temperature portion of the microcline-lowalbite solvus has been experimentally determined at atmosphericpressure by the fused-salt alkali ion exchange technique (Bachinski),and by the homogenization—unmixing technique (Müller).Analytical smoothing of each set of pairs of coexisting compositionsyields critical temperatures and compositions of 885 °Cand 27 mol per cent KAISi3O8, and 887 °C and 24 mol percent KAISi3O8, respectively. The differences between the solviare real and the lack of coincidence of the two is attributable,to varying extents, to differences in the structural state,composition, twinning, and heat treatment of the starting materials.Previous workers' estimates of the position of the one-feldspar-two-feldsparfield boundary are in general accord with the experimental solvi.  相似文献   
4.
A strong correlation in the geometry and mineralogy of two cement generations of a Quaternary with a Precambrian calcarenite enables us to reconstruct the diagenetic history of the Precambrian limestone. Both calcarenites contain two cement generations (A and B) of which A consists of dolomite, B of calcite. The following diagenetic stages can be recognized: after deposition of the allochems in a shallow marine environment, cementation in the intertidal zone with magnesian calcite (cement A) led to the formation of beachrock (Stage 1). By lowering of the sea level, the beach rock was shifted into the supratidal zone, but still remained under the predominant influence of the sea water (breakers, spray). During longer periods of aridity, the magnesian calcite of cement A and of the allochems was transformed into dolomite by brines derived from sea water with very high Mg/Ca ratio (> 15), whereas aragonite and calcite remained unaffected. After further lowering of the sea, an increasing influence of meteoric water caused the wet transformation of aragonitic allochems to sparry calcite and to the precipitation of sparry calcitic cement B.  相似文献   
5.
Abstract— We have produced corundum-bearing residues through the evaporation of natural and synthetic hibonite samples. The sequence of major element losses as well as volatility related trace element fractionations in these residues are similar to those previously observed in residues from the evaporation of chondritic starting material, which suggests that the processes by which these fractionations occur may be largely independent of the starting material used. However, the mineralogy of the residues does depend on the composition of the starting material and, to some extent, on the conditions under which evaporation took place. Similarly, the degree of isotopic mass fractionation observed in the residues is composition-dependent. This observation means that it may be possible to use isotopic data for several elements to constrain the compositions of precursor materials of Ca-Al-rich inclusions, which have an evaporation origin. Although corundum-bearing inclusions are known, their origins are complex and variable, and the scarcity of such inclusions indicates that melting of hibonite, with or without concomitant evaporation, must have been a rare process in the solar nebula. By evaporating mixtures of synthetic oxides of the rare earth elements, we have reproduced the patterns of Group III inclusions and some of the characteristics of ultrarefractory patterns. However, the extreme conditions required to do so indicate that refractory inclusions with these patterns probably have a condensation rather than evaporation origin.  相似文献   
6.
Evidence from a Late Pleistocene eolianite in Fuerteventura, Canary Islands, demonstrates that red algal clasts replaced by low-magnesian calcite in the subaerial environment show a partial re-constitution of their original high-magnesian calcite mineralogy when they are exposed subsequently to sea water. This process only affects the cell walls of the red algae, which, owing to their specific microarchitecture (extremely small crystal size, very large specific surface area), offer the most favourable conditions for dissolution-reprecipitation or diffusion processes. High-magnesian caicite precipitated as a second generation cement on fresh water calcitic cement is an equivalent of the high-magnesian calcite cement which at many locations on the island leads to the formation of beachrock in Holocene intertidal sediments.  相似文献   
7.
8.
The identification of the remains of organisms contributing to carbonate sediments by means of scanning electron-microscopy is limited to particles of the 2–20 μm size class. Mineralogy and the content of Mg, Sr and trace elements alone are usually insufficient to solve the problem of identification, especially in the differentiation between algal and coral aragonite. The organic matrix of calcareous organisms consists of stable biopolymers such as polysaccharides and glycoproteins which are intimately associated with the carbonate skeleton. Analysis of these hydrolysed compounds gives rise to characteristic arrays of monosaccharides which provide independent criteria for producer identification. The calcareous green algae Halimeda, Penicillus and Udotea show high xylose and low fucose levels. Xylose and fucose levels are elevated in the red algae Amphiroa but only fucose is prominent in the brown algae Padina. The corals Oculina, Porites, Millipora and Montastrea are relatively rich in fucose and show little or no xylose. In the bivalves Arca, Codakia and in Argopecten mannose may be characteristic. Analysis of artificial and natural sediments demonstrates that coral and algal aragonite can be distinguished on the basis of the total sugar concentration and respective xylose and fucose levels. The applicability of the technique in comparison to geochemical and mineralogical methods has been demonstrated for surface sediments from varying water depths of Harrington Sound, Bermuda.  相似文献   
9.
Major eustatic fall has been invoked to explain Lower–Middle Cambrian boundary sandstones and faunal replacements on a number of Cambrian palaeocontinents. This proposal has been tested on the Moroccan and Spanish margins of West Gondwana and found to be inadequate to explain stratigraphical developments. In these regions, sandstone intervals long presumed to be regressive and late Early Cambrian in age are now shown to be early Middle Cambrian, and composed of a lower regressive and an overlying transgressive sandstone separated by a regional unconformity. Only the lower tidalites (i.e. Tazlaft Formation in Morocco and lower Daroca sandstones in Spain) record the Hawke Bay eustatic regression in West Gondwana. The Tazlaft is overlain by a newly recognized, unconformably overlying sandstone (Talelt Formation) that onlapped southern Morocco with reactivation of a pull‐apart or transcurrent regime. Up to 150 m of erosion on uplifted blocks in the High Atlas range and foundering of the Souss Basin to the south preceded onlap and deposition of the volcanic‐rich Tatelt, the correlative and depositional analogue of the upper Daroca and lower Valdemides Formations in northern Spain. With folding and erosion, a type 1 depositional sequence boundary also caps the Tatelt at its contact with an overlying, lower Middle Cambrian mudstone‐dominated succession. This unconformity probably occurs in Spain within the Valdemiedes Formation and corresponds to a faunal discontinuity called the ‘Valdemiedes geoevent’. The Iberian ‘Daroca regression’ and Moroccan ‘Asrir regression’ are misnomers, as the sandstones on which they are based are composite units with a lower regressive interval that records eustatic fall and an upper transgressive unit that records epeirogenically driven onlap.  相似文献   
10.
Abstract. Biofacies development, sedimentology, and geochemical properties of intertidal Mytilus beds in the German Wadden Sea have been studied in vertical profiles in situ and in box core samples. Characteristic features of both the live mussel beds and the underlying sediment sequences were detected. The deposition of faeces, pseudofaeces, and trapped fine-grained material results in the formation of well-defined biosedimentary mud layers of several centimetres thickness. The initial stages of this deposition process were observed in a young, growing Myrilus colony over a 17-month period. In an old mussel bed, being in state of decline, both reworking of dead shells and erosion of the biosedimentary mud layers were recognisable. However, deeper parts of the sediment column reveal shell horizons rich in "pairs" of dead Mytilus shells, i.e ., corresponding right and left valves found close together. These represent subrecent records of former Mytilus colonisation. Historically, they point to long-term occurrence of mussel beds at typical localities, in the framework of fluctuation and patchiness patterns, in the more recent past. On the other hand, mud banks at tidal flat margins adjacent to channels suggest a high preservation potential of biosedimentary mud layers in the low-water level environment. Geochemical properties of these muddy sediments corroborate their biodepositional origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号