首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
地质学   5篇
天文学   12篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
A model for the composition of meteoritic nanodiamonds is suggested based on analysis of the concentrations and isotopic compositions of C, N, and Xe in the nanodiamond-rich grain-size fractions, which were separated for the first time from the Orgueil CI chondrite. According to the model, meteoritic nanodiamond consists of two populations of grains (denoted CHL and CN). The size distributions of grains in populations in the CHL and CN populations are different: the CHL population is finer grained than CN. The grains of the CHL population are characterized by a radial gradient in the carbon isotopic composition, and they contain implanted anomalous noble gases (HL component) and the heavy nitrogen isotope 15N. Following (Clayton et al., 1995), the probable astrophysical source of this population of nanodiamond grains is thought to be the mixing helium and hydrogen shells of a Type-II supernova, and the mechanism that produced these grains was the slow CVD process. The CN population grains have homogeneous isotopic compositions of carbon (δ13C ≡–100‰) and nitrogen (δ15N ≡–400‰) and contain almost all nitrogen of the nanodiamond-rich fractions. This population of nanodiamond grains was likely formed by a fast unequilibrated process, when shock waves affected organic compounds or gas rich in C- and N-bearing compounds during the early evolution of the protosolar nebula. Calculations within the framework of the model show that the nanodiamond-rich fractions separated from the Orgueil meteorite have the CN/CHL ratios varying from 1 in the finest grained fraction to 10 in the coarse-grained one. At these proportions of the populations, weighted mean δ13C values of CHL grains in the fractions lie within the range of 42 to 394‰, and the concentrations of 132Xe-HL and 15N are (49–563) × 10–8 cm3/gC and (1.1–6.2) × 10–5 cm3/gC, respectively.  相似文献   
2.
Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1vv 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60–600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.  相似文献   
3.
To simulate the formation of impact glasses on Mars, an analogue of martian bright soil (altered volcanic soil JSC Mars-1) was melted at relevant oxygen fugacities using a pulsed laser and a resistance furnace. Reduction of Fe3+ to Fe2+ and in some cases formation of nanophase Fe0 in the glasses were documented by Mössbauer spectroscopy and TEM studies. Reflectance spectra for several size fractions of the JSC Mars-1 sample and the glasses were acquired between 0.3 and 25 μm. The glasses produced from the JSC Mars-1 soil show significant spectral variability depending on the method of production and the cooling rate. In general, they are dark and less red in the visible compared to the original JSC Mars-1 soil. Their spectra do not have absorption bands due to bound water and structural OH, have positive spectral slopes in the near-infrared range, and show two broad bands centered near 1.05 and 1.9 μm, typical of glasses rich in ferrous iron. The latter bands and low albedo partly mimic the spectral properties of martian dark regions, and may easily be confused with mafic materials containing olivine and low-Ca pyroxene. Due to their disordered structures and vesicular textures, the glasses show relatively weak absorption features from the visible to the thermal infrared. These weak absorption bands may be masked by the stronger bands of mafic minerals. Positive near-infrared spectral slopes typical of fresh iron-bearing impact or volcanic glasses may be masked either by oxide/dust coatings or by aerosols in the Mars' atmosphere. As a result, impact glasses may be present on the surface of Mars in significant quantities that have been either misidentified as other phases or masked by phases with stronger infrared features. Spectrometers with sufficient spatial resolution and wavelength coverage may detect impact glasses at certain locations, e.g., in the vicinity of fresh impact craters. Such dark materials are usually interpreted as accumulations of mafic volcanic sand, but the possibility of an impact melt origin of such materials also should be considered. In addition, our data suggest that high contents of feldspars or zeolites are not necessary to produce the transparency feature at 12.1 μm typical of martian dust spectra.  相似文献   
4.
A nanodiamond‐rich fraction (NDF) separated from the Orgueil meteorite was subjected to a high‐intensity ultrasonic treatment in a weakly acidic aqueous solution. After sedimentation by centrifugation, two fractions of grains (suspension, designated as OD7C and sediment, designated as OD7D) with different properties have been obtained. The following effects of the sonication were revealed from comparison of the contents and isotope compositions of C, N, and Xe released during stepped pyrolysis and combustion of the fractions OD7C and OD7D, the initial NDF and two grain‐size fractions (OD10 and OD15) produced without sonication (a) surface layer of the sonicated diamond grains is modified to different extent in comparison with nontreated ones, (b) in some grains concentrations of the bulk N and Xe a reduced significantly, and (c) nondiamond nitrogen containing phases (e.g., Si3N4) have been destroyed. It is suggested that combined effects of the sonication and centrifugation observed for the fractions OD7C and OD7D are due to differences in surface chemistry of the nanodiamond grains, which statistically influences behavior of nanoparticles during the sonication resulting in their preferential modification in the different reaction zones of the cavitating fluid.  相似文献   
5.
The Sunyaev-Zel’dovich (SZ) effect represents a small spectral distortion to the cosmic microwave background (CMB) radiation, caused by the Compton scattering of CMB photons by the hot gas of galaxy clusters. In an early stage of universe, the SZ effect generates \(\mu\)-type of distortions for the CMB spectrum. A \(\mu\)-type distortion is created between the double Compton scattering decoupling (\(z \sim 10^{6}\)) and the thermalization decoupling by the Compton scattering (\(z \sim 10^{5}\)). In this case, to describe the small spectral distortion of the CMB spectrum, we use the Bose-Einstein (\(\mu\)-type) distribution with a non-zero chemical potential. At present, it is interesting to investigate the effect of this spectral distortion on the integral characteristics of the Bose-Einstein (\(\mu\)-type) spectrum. The thermal radiative and thermodynamic functions are such integral characteristics. These functions are as follows: a) the total radiation power per unit area; b) total energy density; c) number density of photons; d) grand potential density; e) Helmholtz free energy density; f) entropy density; g) heat capacity at constant volume; h) enthalpy density; and i) pressure. Precise analytical expressions are obtained for the temperature dependences of these functions. Using the observational data obtained by the COBE FIRAS, PIXIE, PRISM, and Planck missions, the thermal radiative and thermodynamic functions are calculated. A comparative analysis of the results obtained with the results for the same functions of the CMB spectrum at \(T = 2.72548~\mbox{K}\) is carried out. Very small distortions are observed for the thermal radiative and thermodynamic functions. In the redshift range \(10^{5} < z < 3 \times10^{6}\), these functions are calculated. The expressions are obtained for new astrophysical parameters, such as the entropy density/Boltzmann constant and number density, created by the Bose-Einstein (\(\mu\)-type) spectrum.  相似文献   
6.
The results of spectroscopic and structural studies of phase composition and defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) chondrites indicate that nitrogen atomic environment in meteoritic nanodiamonds (MND) is similar to that observed in synthetic counterparts produced by detonation and by the Chemical Vapor Deposition (CVD)-process. Most of the nitrogen in MND appears to be confined to lattice imperfections, such as crystallite/twin boundaries and other extended defects, while the concentration of nitrogen in the MND lattice is low. It is suggested that the N-rich sub-population of MND grains may have been formed with high growth rates in environments rich in accessible N (i.e., N in atomic form or as weakly bonded compounds). For the first time the silicon-vacancy complex (the “silicon” defect) is observed in MND by photoluminescence spectroscopy.  相似文献   
7.
Based on the heterogeneity in the contents and isotopic compositions of carbon, nitrogen, and rare gases found in different (in grain size) interstellar diamond fractions of the meteorite Efremovka, we discuss issues associated with the nature of the diamond, the distribution of the isotopic components of impurity chemical elements in it, and the kinetics of their release.  相似文献   
8.
The present study has shown that the dependence of the isotopic composition of nitrogen on the N/C ratio, revealed from the data for bulk samples of meteoritic nanodiamond, can be obtained within the framework of the following model of the composition of populations of nanodiamond grains: (a) initial nanodiamond, i.e., the nanodiamond in the protoplanetary cloud before the accretion of the meteorite parent bodies, was composed mainly of grains of two populations (denoted as CN and CF), the ratio of which changed in meteorites depending on the degree of hydrothermal metamorphism; (b) only the grains of one of these populations (CN) contain volume-bound nitrogen with δ15N = ?350‰; (c) the grains of both populations contain surface-bound nitrogen (δ15N ≡ 0). The calculations revealed the following properties of population grains in this model. (1) The grains of the CN and CF populations are most likely the same in isotopic composition of carbon and heterogeneous in distribution of its isotopes: the central part of grains is enriched with the δ12C isotope relative to the remainder of the grain. While the value of δ13C is ?37.3 ± 1.1‰ for carbon in the central part, it is ?32.8 ± 1.5‰ for the whole volume of the grains. (2) The noble gases of the HL component, specifically Xe-HL, are anomalous in isotopic composition and are most likely contained in the third population of nanodiamond grains (denoted as CHL), the mass fraction of which is negligible relative to that for other grain populations. Only the grains of the CHL population have an undoubtedly presolar origin, while the grains of the other nanodiamond populations could have formed at the early stages of the evolution of the protoplanetary cloud material before the accretion of the meteoritic parent bodies.  相似文献   
9.
We measured the contents and isotopic compositions for C, N, and noble gases in the diamond fractions separated in a heavy liquid ( = 2.9 g/cm3) from a sample enriched with diamond from the Novo Urei ureilite. The results show that the concentrations of nitrogen and noble gases in the diamond fraction isolated from the supernatant (the fraction is named DNU-1) are more than a factor of 1.5 higher than those in the diamond fraction from the residue (DNU-2). This difference is probably caused by smaller sizes of grains and (or) clusters of smaller grains as well as by larger defectiveness of the crystal lattice of the diamond in the DNU-1 fraction as compared to DNU-2. Both fractions are similar in the isotopic composition of C and N and in the ratios of trapped chemical elements. The results obtained and the published data concerning C, N, and noble gases in different fractions of other ureilites allow us to conclude the following. (1) The ureilite diamond was most likely formed from graphite and the fine-grained crystalline (or semiamorphous) carbonaceous phase as a result of shock transformation in the parent bodies. (2) The negative result in the search for the isotopically light component of nitrogen (15N is about –100) in the Antarctic unshocked ureilite ALH 78019 (Rai et al., 2002), which introduced serious difficulties for explaining the origin of the ureilite diamond in the parent bodies during the impact, is most likely caused by the absorption of atmospheric nitrogen by the carbonaceous material in the processes of terrestrial weathering. (3) The source of light nitrogen (15N –100) in the ureilite diamond was probably the presolar diamond in the initial carbonaceous material of the ureilite parent bodies, because the impurity elements, including nitrogen (15N < –350), in this diamond could be trapped in the magmatic processes by the carbonaceous material, which became a precursor of the ureilite diamond in the shock event.  相似文献   
10.
We hypothesize the formation of neon associated with isotopically anomalous xenon (Xe-HL) in meteoritic nanodiamonds and designated as Ne-X through the mixing of the Ne-HL and Ne-S subcomponents. The Ne-HL subcomponent is neon from the helium (He/C) zone of a type II supernova or a mixture of neon from this zone and its hydrogen zone, while the Ne-S subcomponent is spallation neon formed during a supernova explosion in nuclear spallation reactions induced by high-energy protons. Based on this hypothesis and the presumed abundances of neon isotopes in the zones of a high-mass (25M ) supernova after its explosion, we have calculated the abundances of neon components in nanodiamond separates and its grain-size fractions. Our calculations have shown the following. (1) The main source of Ne-HL is neon from the helium zone of the supernova; as a result, the 20Ne/22Ne and 21Ne/22Ne ratios for Ne-X are 0.26 ± 0.03 and 0.19 ± 0.04, respectively. The isotopic composition of Ne-X is identical to that for Ne-A2 if Ne-HL is produced by the mixing of neon from the helium and hydrogen zones in proportion 1: 1.06. (2) In meteoritic nanodiamonds, the main neon abundance is determined by neon of the P3 component (Ne-P3). Ne-P3 is retained during thermal metamorphism, because it is sited in traps of the crystal lattice of diamond with a high energy of its activation. (3) The Ne-X/Ne-P3 ratio increases with nanodiamond grain size; as a result, there is no need to invoke an additional neon component (Ne-P6) to interpret the data on neon in meteoritic nanodiamonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号