首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
天文学   6篇
  2012年   1篇
  2010年   1篇
  2000年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
High‐fidelity spectroscopy presents challenges for both observations and in designing instruments. High‐resolution and high‐accuracy spectra are required for verifying hydrodynamic stellar atmospheres and for resolving intergalactic absorption‐line structures in quasars. Even with great photon fluxes from large telescopes with matching spectrometers, precise measurements of line profiles and wavelength positions encounter various physical, observational, and instrumental limits. The analysis may be limited by astrophysical and telluric blends, lack of suitable lines, imprecise laboratory wavelengths, or instrumental imperfections. To some extent, such limits can be pushed by forming averages over many similar spectral lines, thus averaging away small random blends and wavelength errors. In situations where theoretical predictions of lineshapes and shifts can be accurately made (e.g., hydrodynamic models of solar‐type stars), the consistency between noisy observations and theoretical predictions may be verified; however this is not feasible for, e.g., the complex of intergalactic metal lines in spectra of distant quasars, where the primary data must come from observations. To more fully resolve lineshapes and interpret wavelength shifts in stars and quasars alike, spectral resolutions on order R = 300 000 or more are required; a level that is becoming (but is not yet) available. A grand challenge remains to design efficient spectrometers with resolutions approaching R = 1 000 000 for the forthcoming generation of extremely large telescopes (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
2.
Dravins  Dainis 《Solar physics》1974,37(2):323-342
Three dimensional vector magnetic field structure throughout the chromosphere above an active region is deduced by combining high resolution H filtergrams with a simultaneous digital magnetogram. An analog model of the field is made with 400 metal wires representing fieldlines which are assumed to outline the H structure. The height extent of the field is determined from vertical field gradient observations around sunspots, from observed fibril heights and from an assumption that the sources of the field should be largely local. After digitization the magnetic field H matrix is retrieved. Electric current densities j are computed from j=curl H. The currents (typically 10 mA m–2) flow in patterns not similar to observed features and not parallel to magnetic fields. Lorentz forces are computed from {ie0323-01}. The force structures correspond to observed solar features and a series of observed dynamics may be expected: downward motion in bipolar areas in lower chromosphere, an outflow of the outer chromosphere into the corona with radially outward flow above bipolar plage regions (where coronal streamers are observed) and motions of arch filament systems. Observed current structure and magnitude agree well with previous vector magnetograph observations but disagree with theoretical current-free or force-free concepts. A dynamic chromosphere with electromagnetic forces in action is thus inferred from observations.  相似文献   
3.
Horizontal macroscopic velocities V hor in the photosphere are studied. High-resolution spectrograms of quiet regions are analyzed for center-limb variation of rms Doppler shifts. The data are treated to assure that the observed velocities refer to constant size volumes on the Sun (800 × × 3000 × 250 km), independent of μ. Using known height variation of vertical velocities and calculated line formation heights, the height dependence of 〈V hor〉 is obtained. From a value around 450 m s?1 it decreases rapidly with increasing height. To study also small-scale velocities, the time evolution of subarcsecond size elements in the photospheric network (solar filigree) is studied on filtergrams. It is concluded that they show proper motions implying 〈V hor〉 about 1 km s?1.  相似文献   
4.
Using kilometric arrays of air Cherenkov telescopes at short wavelengths, intensity interferometry may increase the spatial resolution achieved in optical astronomy by an order of magnitude, enabling images of rapidly rotating hot stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (once pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large airmasses, also at short optical wavelengths. The required large telescopes (~10 m) with very fast detectors (~ns) are becoming available as the arrays primarily erected to measure Cherenkov light emitted in air by particle cascades initiated by energetic gamma rays. Planned facilities (e.g., CTA, Cherenkov Telescope Array) envision many tens of telescopes distributed over a few square km. Digital signal handling enables very many baselines (from tens of meters to over a kilometer) to be simultaneously synthesized between many pairs of telescopes, while stars may be tracked across the sky with electronic time delays, in effect synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around mV = 8, reaching angular resolutions ~30 μarcsec in the violet. The signal-to-noise ratio favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Intensity interferometry directly provides the modulus (but not phase) of any spatial frequency component of the source image; for this reason a full image reconstruction requires phase retrieval techniques. This is feasible if sufficient coverage of the interferometric (u, v)-plane is available, as was verified through numerical simulations. Laboratory and field experiments are in progress; test telescopes have been erected, intensity interferometry has been achieved in the laboratory, and first full-scale tests of connecting large Cherenkov telescopes have been carried out. This paper reviews this interferometric method in view of the new possibilities offered by arrays of air Cherenkov telescopes, and outlines observational programs that should become realistic already in the rather near future.  相似文献   
5.
An instrument designed to record polarization in the region 120–150 nm of the solar spectrum was launched on the satellite Intercosmos-16, July 27, 1976. The aim was to search for resonance-line polarization that is caused by coherent scattering. Oblique reflections at gold- and aluminium-coated mirrors in the instrument were used to analyze the polarization. The average polarization of the L solar limb was found to be less than 1%. It is indicated how future improved VUV polarization measurements may be a diagnostic tool for chromospheric and coronal magnetic fields and for the three-dimensional geometry of the emitting structures.On leave from Lund Observatory, S-22224 Lund, Sweden.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
6.
The influence of strong, large‐scale magnetic fields on the structure and temperature distribution in white dwarf atmospheres is investigated. Magnetic fields may provide an additional component of pressure support, thus possibly inflating the atmosphere compared to the non‐magnetic case. Since the magnetic forces are not isotropic, atmospheric properties may significantly deviate from spherical symmetry. In this paper the magnetohydrostatic equilibrium is calculated numerically in the radial direction for either for small deviations from different assumptions for the poloidal current distribution. We generally find indication that the scale height of the magnetic white dwarf atmosphere enlarges with magnetic field strength and/or poloidal current strength. This is in qualitative agreement with recent spectropolarimetric observations of Grw+10°8247. Quantitatively, we .nd for e.g. a mean surface poloidal field strength of 100 MG and a toroidal field strength of 2‐10 MG an increase of scale height by a factor of 10. This is indicating that already a small deviation from the initial force‐free dipolar magnetic field may lead to observable effects. We further propose the method of finite elements for the solution of the two‐dimensional magnetohydrostatic equilibrium including radiation transport in the diffusive approximation. We present and discuss preliminary solutions, again indicating on an expansion of the magnetized atmosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号