首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2261篇
  免费   112篇
  国内免费   6篇
测绘学   91篇
大气科学   162篇
地球物理   503篇
地质学   893篇
海洋学   150篇
天文学   384篇
综合类   8篇
自然地理   188篇
  2023年   13篇
  2022年   12篇
  2021年   32篇
  2020年   49篇
  2019年   54篇
  2018年   57篇
  2017年   80篇
  2016年   97篇
  2015年   62篇
  2014年   64篇
  2013年   132篇
  2012年   91篇
  2011年   104篇
  2010年   117篇
  2009年   123篇
  2008年   118篇
  2007年   104篇
  2006年   110篇
  2005年   98篇
  2004年   98篇
  2003年   65篇
  2002年   74篇
  2001年   43篇
  2000年   28篇
  1999年   47篇
  1998年   24篇
  1997年   27篇
  1996年   21篇
  1995年   22篇
  1994年   40篇
  1993年   21篇
  1992年   15篇
  1991年   22篇
  1990年   16篇
  1989年   16篇
  1988年   11篇
  1987年   16篇
  1986年   13篇
  1985年   14篇
  1984年   18篇
  1983年   25篇
  1982年   17篇
  1981年   14篇
  1980年   28篇
  1979年   13篇
  1978年   10篇
  1977年   18篇
  1975年   9篇
  1974年   10篇
  1973年   16篇
排序方式: 共有2379条查询结果,搜索用时 31 毫秒
1.
We report on the petrography and mineralogy of five Yamato polymict eucrites to better constrain the formation and alteration of crustal material on differentiated asteroids. Each sample consists of different lithic clasts that altogether form four dominant textures and therefore appear to originate from closely related petrological areas within Vesta′s crust. The textures range from subophitic to brecciated, porphyritic, and quench‐textured, that differ from section to section. Comparison with literature data for these samples is therefore difficult, which stresses that polymict eucrites are extremely complex in their petrography and investigation of only one thick section may not be representative for the host rock. We also show that sample Y‐793548 consists of more than one lithic unit and must therefore be classified as polymict instead of monomict. The variety and nature of lithic textures in the investigated Yamato meteorites indicate shock events, intense post‐magmatic thermal annealing, and secondary alteration. These postmagmatic features occur in different intensities, varying from clast to clast or among coexisting mineral fragments on a small, local scale. Several clasts within the eucrites studied have been modified by late‐stage alteration processes that caused deposition of Fe‐rich olivine and Fe enrichment along cracks crosscutting pyroxene crystals. However, formation of these secondary phases seems to be independent of the degree of thermal metamorphism observed within every type of clast, which would support a late‐stage metasomatism model for their formation.  相似文献   
2.
3.
Abstract— We studied unshocked and experimentally (at 12, 25, and 28 GPa, with 25, 100, 450, and 750°C pre‐shock temperatures) shock‐metamorphosed Hospital Hill quartzite from South Africa using cathodoluminescence (CL) images and spectroscopy and Raman spectroscopy to document systematic pressure or temperature‐related effects that could be used in shock barometry. In general, CL images of all samples show CL‐bright luminescent patchy areas and bands in otherwise nonluminescent quartz, as well as CL‐dark irregular fractures. Fluid inclusions appear dominant in CL images of the 25 GPa sample shocked at 750°C and of the 28 GPa sample shocked at 450°C. Only the optical image of our 28 GPa sample shocked at 25°C exhibits distinct planar deformation features (PDFs). Cathodoluminescence spectra of unshocked and experimentally shocked samples show broad bands in the near‐ultraviolet range and the visible light range at all shock stages, indicating the presence of defect centers on, e.g., SiO4 groups. No systematic change in the appearance of the CL images was obvious, but the CL spectra do show changes between the shock stages. The Raman spectra are characteristic for quartz in the unshocked and 12 GPa samples. In the 25 and 28 GPa samples, broad bands indicate the presence of glassy SiO2, while high‐pressure polymorphs are not detected. Apparently, some of the CL and Raman spectral properties can be used in shock barometry.  相似文献   
4.
Radiative Transfer (RT) codes with image capability are a fundamental tool for preparing interferometric observations and for interpreting visibility data. In view of the upcoming VLTI facilities, we present the first comparison of images/visibilities coming from two 3D codes that use completely different techniques to solve the problem of self-consistent continuum RT. In addition, we focus on the astrophysical case of a disk distorted by tidal interaction with by-passing stars or internal planets and investigate for which parameters the distortion can be best detected in the mid-infrared using the mid-infrared interferometric device MIDI. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
This paper describes recent exceptional slope failures in high-mountain, glacial environments: the 2002 Kolka–Karmadon rock–ice avalanche in the Caucasus, a series of ice–rock avalanches on Iliamna Volcano, Alaska, the 2005 Mt. Steller rock–ice avalanche in Alaska, and ice and rock avalanches at Monte Rosa, Italy in 2005 and 2007. Deposit volumes range from 106 to 108 m3 and include rock, ice and snow. Here we focus on thermal aspects of these failures reflecting the involvement of glacier ice and permafrost at all sites, suggesting that thermal perturbations likely contributed to the slope failures. We use surface and troposphere air temperatures, near-surface rock temperatures, satellite thermal data, and recent 2D and 3D thermal modeling studies to document thermal conditions at the landslide sites. We distinguish between thermal perturbations of volcanic-geothermal and climatic origin, and thermal perturbations related to glacier–permafrost interaction. The data and analysis support the view that recent, current and future climatic change increases the likelihood of large slope failures in steep glacierized and permafrost terrain. However, some important aspects of these settings such as the geology and tectonic environment remain poorly understood, making the identification of future sites of large slope instabilities difficult. In view of the potentially large natural disasters that can be caused by such slope failures, improved data and understanding are needed.  相似文献   
6.
    
  相似文献   
7.
8.
9.
Abstract— The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock‐metamorphosed minerals. The shocked minerals represent impact ejecta from the 74‐Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84‐21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal‐unit samples, mainly from the Gregory 84‐21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2 (29–58 wt%), Al2O3 (6–14 wt%), and CaO (7–30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75–99), coupled with the Al2O3‐(CaO*+Na2O)‐K2O (A‐CN'‐K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present‐day crater radius of Manson), or 0.4 to 2.4 cm (for the estimated transient cavity radius). The trend agrees with the observed thicknesses of the basal unit of the Crow Creek Member, but the actually observed thicknesses are larger than the calculated ones, indicating that not all of the basal unit comprises impact ejecta.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号