首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
  国内免费   2篇
大气科学   3篇
地球物理   9篇
地质学   2篇
海洋学   37篇
天文学   2篇
自然地理   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
High resolution SeaWiFS data was used to detect red tide events that occurred in the Ariake Sound, Japan, a small embayment known as one of the most productive areas in Japan. SeaWiFS chlorophyll data clearly showed that a large red tide event, which damaged seaweed (Nori) cultures, started early in December 2000 in Isahaya Bay, expanded to the whole sound and persisted to the end of February 2001. The monthly average of SeaWiFS data from May 1998 to December 2001 indicated that the chlorophyll peaks appeared twice a year, in early summer and in fall, after the peaks of rain and river discharge. The SeaWiFS data showed that the red tide event during 2000–2001 winter was part of the fall bloom; however, it started later and continued significantly longer than other years. Satellite ocean color data is useful to detect the red tide; however the algorithms require improvement to accurately estimate chlorophyll in highly turbid water and in red tide areas.  相似文献   
2.
In order to estimate primary production from ocean color satellite data using the Vertical Generalized Production Model (VGPM; Behrenfeld and Falkowski, 1997), we propose a two-phytoplankton community model. This model is based on the two assumptions that changes in chlorophyll concentration result from changes of large-sized phytoplankton abundance, and chlorophyll specific productivity of phytoplankton tends to be inversely proportional to phytoplankton size. Based on the analysis of primary production data, P opt B , which was one parameter in the VGPM, was modeled as a function of sea surface temperature and sea surface chlorophyll concentration. The two-phytoplankton community model incorporated into the VGPM gave good estimates in a relatively high productive area. Size-fractionated primary production was estimated by the two-phytoplankton community model, and P opt B of small-sized phytoplankton was 4.5 times that of large-sized phytoplankton. This result fell into the ranges observed during field studies.  相似文献   
3.
4.
A comparative account of primary productivity (PP), in the characteristically turbid and highly dynamic waters of Ariake Bay, measured by 13C uptake and fast repetition rate fluorometer (FRRF) was conducted to ensure compatibility between the two methods. Estimates from both methods depicted strong linearity for both short-term (r2 > 0.90) and daily (r2 = 0.42–0.93) measurements, except in the near-surface (∼0 m) layer. 13C-based short-term (1 h; in situ) PP estimates showed similar magnitudes and trend with the instantaneous PP measured by FRRF concurrently. Whereas, unlike short-term measurements, the daily PP estimates from both methods showed large difference, with FRRF-based time integrated daily PP resulting in 1.09–1.82 times higher than the carbon-based daily (24 h; simulated in situ) PP. This difference between daily PP estimates was mainly due to: (1) the temporal variation of water column chlorophyll a (Chl a) because of frequent moving of water mass, and (2) the dissimilarity in ambient light field conditions between the two methods. Results revealed that considering the above two environmental factors invariable over a daylength, fairly close approximation of daily PP, compared to 13C-based daily PP, could be obtained from FRRF. Hence, FRRF-based daily PP can be considered as more realistic in this highly dynamic water body like Ariake Bay where water column parameters are subjected to strong temporal variation. The relationship between Chl a-specific photosynthetic rate (PB) and the corresponding photosynthetically active radiation (PAR) in the water column (PAR–PB relationship) was found to be linear for FRRF and curvilinear for 13C-based measurements in the near-surface layer, for the same intensities of incident PAR, and this is thought to be the primary basis for the higher difference in PP estimates at the near-surface layer. Considering the minor variations in FRRF-based time series of PAR–PB relationships, a combined and/or instantaneous PAR–PB relationship in combination with incubation Chl a and light field condition was used to obtain fairly close estimates of daily water column integrated PP from FRRF.  相似文献   
5.
Airborne measurements made during August 1985 over Greenland and its environs show that both accumulation-mode (0.1 m D2.0 m) and giant (D2 m) particles were present in relatively high concentrations in arctic haze layers and that the accumulation-mode particles dominated light scattering. Particles with diameters (D) between 1 and 4 m consisted predominately of mixed materials, small and dense inclusions, and probably organic compounds containing sulfur. Many of the particles from 0.1 to 1 m in diameter were also of mixed composition, with sulfuric acid, ammonium sulfate and organics probably the dominant constituents.  相似文献   
6.
High-magnesian andesites of middle Miocene age occur in southwest Japan, forming an obvious volcanic belt. These andesites have low FeO*/MgO ratios (0.546–0.931), and are rich in Ni (101–312 ppm), Co (30.0–45.1 ppm), and Cr (208–756 ppm). They are relatively aphyric (phenocrysts <10 vol.%), and the phenocrysts of magnesian olivine (~Fo88) are in equilibrium with the host high-magnesian andesite magmas on the basis of the Fe-Mg exchange partitioning. These features suggest that the high-magnesian andesites are not differentiated or accumulative; they appear to represent primary andesites generated in the upper mantle. These southwest Japanese high-magnesian andesites are rich in incompatible elements, and show light rare earth enrichment relative to boninites, suggesting that the former is derived from a less depleted mantle source than the latter.  相似文献   
7.
Remote sensing reflectance [R rs(λ)] and absorption coefficients of red tides were measured in Isahaya Bay, southwestern Japan, to investigate differences in the optical properties of red tide and non-red tide waters. We defined colored areas of the sea surface, visualized from shipboard, as “red tides”. Peaks of the R rs(λ) spectra of non-red tide waters were at 565 nm, while those of red tides shifted to longer wavelengths (589 nm). The spectral shape of R rs(λ) was close to that of the reciprocal of the total absorption coefficient [1/a(λ)], implying that the R rs(λ) peak is determined by absorption. Absorption coefficients of phytoplankton [a ph(λ)], non-pigment particles and colored dissolved organic matter increased with increasing chlorophyll a concentration (Chl a), and those coefficients were correlated with Chl a for both red tide and non-red tide waters. Using these relationships between absorption coefficients and Chl a, variation in the spectrum of 1/a(λ) as a function of Chl a was calculated. The peak of 1/a(λ) shifted to longer wavelengths with increasing Chl a. Furthermore, the relative contribution of a ph(λ) to the total absorption in red tide water was significantly higher than in non-red tide water in the wavelength range 550–600 nm, including the peak. Our results show that the variation of a ph(λ) with Chl a dominates the behavior of the R rs(λ) peak, and utilization of R rs(λ) peaks at 589 and 565 nm may be useful to discriminate between red tide and non-red tide waters by remote sensing.  相似文献   
8.
Our analysis of the last three decades of retrospective data of vertical distributions and size composition of chlorophyll-a (Chl-a) over the western North Pacific has revealed significant changes of three indices related to Chl-a during summer season, as follows: (1) decreasing linear trend of the proportion of Chl-a in surface layer to that of the whole water column by 0.4 and 2.3% year−1 in the subtropical area along 137°E (STA137) during 1972 to 1997 and in the Kuroshio Extension area along 175°E (KEA175) during 1990 to 2001; (2) increasing linear trend of the depth of subsurface Chl-a maximum (DCM) by 0.4 and 2.6 m year−1 in STA137 and KEA175; and (3) decreasing linear trend of larger-size Chl-a (>3 μm) by 0.1 and 2.5% year−1 in STA137 and KEA175, respectively. Water density (σ θ ) at 75 m depth had also decreased by 0.006 and 0.05 year−1 in STA137 and KEA175, respectively. The ratio of biogenic opal to biogenic CaCO3 in the sinking flux decreased by 0.015 year−1 in the subtropical region from 1997 to 2005. These findings may indicate that the subsurface chlorophyll maximum is deepening and larger phytoplankton such as diatoms has been decreasing during the past decade, associated with the decreasing density of surface water caused by warming in the western North Pacific, especially in the summer.  相似文献   
9.
Time series of the chlorophyll-a concentration (Chl-a) observed by ocean color satellites from 1998 to 2009 were used to assess eutrophication in Toyama Bay, the Sea of Japan. An overall mean of Chl-a during the 12-year period was used to divide the study area into “high” or “low” Chl-a areas based on a reference condition of 5 mg m?3. The annual maximum monthly mean Chl-a trend was estimated pixel-wise and its significance examined by the Sen slope test at a 90 % confidence level. By combining the level and trend of remotely sensed Chl-a, Toyama Bay was then classified into six eutrophication states: high-increasing, high-no trend, high-decreasing, low-increasing, low-no trend and low-increasing. Our study indicates that the combined use of both the level and trend of remotely sensed Chl-a can be an efficient method to preliminarily assess eutrophication of coastal waters after a quality screening process with level 2 flags and validation with in situ Chl-a data.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号