首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
天文学   39篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   4篇
  1986年   2篇
  1983年   1篇
  1978年   1篇
排序方式: 共有39条查询结果,搜索用时 16 毫秒
1.
During the type IV burst on 24 April, 1985 we observed at 234 MHz an untypical, strong, nearly six hours lasting continuum emission incorporating several groups of broadband pulsations, zebra patterns, fiber bursts, and a new fine structure phenomenon. The power spectra of the groups of broadband pulsations reveal no simple structure. There is only one common periodic component between 0.3 s and 0.4 s. Slowly drifting chains of narrowband fiber bursts are described as a new fine structure by spectrograms and simultaneously recorded single frequency intensity profiles. A qualitative model of this new fine structure is suggested.  相似文献   
2.
H. Aurass  B. Kliem 《Solar physics》1992,141(2):371-379
In the late phase of some complex flare events which produce type IV radio emission, a narrow-band decimetric component with generally a high abundance of spectral fine structures is observed. We identify this late dm continuum as a hypothetical switch-off signature of the equivalent two-ribbon flare current system. The quasi-periodic and highly dynamic fiber-burst pattern studied in the February 5, 1986 example is understood as radio evidence for a final reactivation of a cyclic sequence of instabilities in the driven reconnecting current sheet below the rising prominence.Paper presented at the 4th CESRA Workshop in Ouranopolis (Greece) 1991.  相似文献   
3.
The spectral fine structure of solar radio continua is thought to reveal wave-particle and wave-wave interactions in magnetic traps in the solar corona. We present observations of spectra, polarization, and spatial characteristics of combined emission/extinction features (zebra patterns) during a decimetric/metric type IV event on 5 June, 1990. Very high modulation depths are observed. The size and location of the sources during emission and extinction are determined for the first time. Two remarkable features are found: (1) The sources of emission stripes have finite size, up to nearly 2; during extinction stripes the brightness is reduced across the whole extent of the unperturbed continuum, which is slightly larger than 2. (2) During emission stripes the sources drift over distances up to several × 104 km, with apparent velocities up to 105 km s–1. The observed features are briefly discussed with respect to interpretations based on wave-particle interactions and on the scattering of electromagnetic waves.  相似文献   
4.
Vršnak  B.  Magdalenić  J.  Aurass  H. 《Solar physics》2001,202(2):319-335
The relationship between metric type II radio bursts and solar flares is studied. Well-defined correlations between the properties of type II bursts and the characteristics of associated microwave and soft X-ray bursts are established in two entirely independent data sets. It is shown that the correlations are strongly affected by the wide range of coronal Alfvén velocities involved, comprising values from only 150 up to 800 km s–1, with a typical value of 400 km s–1. After careful data analysis it was inferred that type II bursts are more closely related to the soft X-ray bursts than they are to microwave bursts. The correlations indicate that type II burst shocks are preferably generated by flares with a relatively strong thermal component, and that the shocks are probably ignited by the plasma expansion associated with the 'evaporation' process in the transition region. Although the results imply that the majority of metric type II bursts are caused by flares, a simple geometrical consideration shows that a fraction of non-flare type II bursts cannot be explained by behind-limb events and that roughly 10% of metric type II bursts should be attributed to non-flare coronal mass ejections.  相似文献   
5.
The development of a coronal mass ejection on 9 July 1996 has been analyzed by comparing the observations of the LASCO/SOHO coronagraphs with those of the Nancay radioheliograph. The spatial and temporal evolution of the associated radioburst is complex and involves a long-duration continuum. The analysis of the time sequence of the radio continuum reveals the existence of distinct phases associated with distinct reconnection processes and magnetic restructuring of the corona. Electrons are accelerated in association with these reconnection processes. An excellent spatial association is found between the position and extension of the radio source and the CME seen by LASCO. Furthermore, it is shown that the topology and evolution of the source of the radio continuum involve successive interactions between two systems of loops. These successive interactions lead to magnetic reconnection, then to a large scale coronal restructuring. Thus electrons of coronal origin may have access to the interplanetary medium in a large range of heliographic latitudes as revealed by the Ulysses observations.  相似文献   
6.
The possibility of obtaining information about oscillation processes in magnetic flux tubes on the Sun by analyzing the undulating frequency drift of the zebra pattern in the dynamic spectrum of solar radio emission is discussed. It is shown that the oscillatory variation in the frequency of zebra stripes can be associated with fast magnetoacoustic (FMA) oscillations in a flux tube, which lead to oscillations in the magnetic field strength and electron number density. The October 25, 1994 event recorded by the radio spectrograph of the Astrophysical Institute Potsdam is used as an example to demonstrate the possibility of determining the parameters of FMA oscillations and the physical conditions in coronal magnetic loops from the observed zebra-pattern characteristics.  相似文献   
7.
We study the general X-ray and multiwavelength characteristics of microflares of GOES class A0.7 to B7.4 (background subtracted) detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on 26 September 2003 comparing them with the properties of regular flares. All the events for which X-ray imaging was feasible originated in one active region and were accumulated in areas with intermixed magnetic polarities. During the events’ rise and peak phase, the RHESSI X-ray spectra show a steep nonthermal power-law component (4?γ?10) for energies ??10 keV. Further evidence for the presence of electron beams is provided by the association with radio type III bursts in 5 out of 11 events where AIP radio spectra were available. The strongest event in our sample shows radio signatures of a type II precursor. The thermally emitting flare plasma observed by RHESSI is found to be hot, 11?T?15 MK, with small emission measures, 1046?EM?1047 cm?3, concentrated in the flare loop. In the EUV (TRACE 171 Å), the UV (TRACE 1600 Å) and Kanzelhöhe Solar Observatory Hα, impulsive brightenings at both ends of the RHESSI 3?–?6 keV X-ray loop source are observed, situated in opposite magnetic polarity fields. During the decay phase, a postflare loop at the location of the RHESSI loop source is observed in the TRACE 171 Å? channel showing plasma that is cooled from ??10 MK to ≈?1 MK. Correlations between various thermal and nonthermal parameters derived from the RHESSI microflare spectra compared to the same correlations obtained for a set of small and large flares by Battaglia et al. (Astron. Astrophys. 439, 737, 2005) indicate that the RHESSI instrument gives us a spectrally biased view since it detects only hot (T?10 MK) microflares, and thus the correlations between RHESSI microflare parameters have to be interpreted with caution. The thermal and nonthermal energies derived for the RHESSI microflares are \(\bar{E}_{\mathrm{th}}=7\times 10^{27}\) ergs and \(\bar{E}_{\mathrm{nth}}=2\times 10^{29}\) ergs, respectively. Possible reasons for the order-of-magnitude difference between the thermal and nonthermal microflare energies, which was also found in previous studies, are discussed. The determined event rate of 3.7 h?1 together with the average microflare energies indicate that the total energy in the observed RHESSI microflares is far too small to account for the heating of the active region corona in which they occur.  相似文献   
8.
9.
Aurass  H.  Chernov  G. P. 《Solar physics》1983,84(1-2):339-345
A new quantitative zebra pattern observation is reported. The mean amplitude ratio of the emission and absorption features of the irregular zebra pattern observed simultaneously with and related to an increased continuum is Q = 3. This is not contradictory to a zebra pattern model in terms of whistler soliton propagation throughout the source of continuum emission.  相似文献   
10.
H. Aurass  G. Mann 《Solar physics》1987,112(2):359-364
An example of m-Dm solar radio pulsations consisting of a mixture of different minute scale periodic components is discussed. The ratios of the observed periods are independent on the observing frequency. They can be reproduced by the pulsation model of standing magnetoacoustic waves in coronal flux tubes driven by trapped protons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号