首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
测绘学   1篇
大气科学   6篇
地球物理   4篇
地质学   5篇
海洋学   3篇
天文学   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
排序方式: 共有21条查询结果,搜索用时 17 毫秒
1.
Variscan shear zones in the Armorican Massif represent sites of strong fluid‐rock interaction. The hydrogen isotope composition of muscovite (δDMs) from syntectonic leucogranite allows to determine the source of fluids that infiltrated the footwall of three detachment zones and the South Armorican Shear Zone. Using temperatures of hydrogen isotope exchange estimated from microstructural data, we calculate the hydrogen isotope ratios of water (δDwater) present within the shear zones during high‐temperature deformation. A ~40‰ difference in δDwater values from deep to shallow crustal level reveals a mixing relationship between deep crustal fluids with higher δD values that range from ?34 to ?33‰, and meteoric fluids with δD values as low as ?74‰ in the upper part of detachment footwalls.  相似文献   
2.

Background

Concern about climate change has motivated France to reduce its reliance on fossil fuel by setting targets for increased biomass-based renewable energy production. This study quantifies the carbon costs and benefits for the French forestry sector in meeting these targets. A forest growth and harvest simulator was developed for French forests using recent forest inventory data, and the wood-use chain was reconstructed from national wood product statistics. We then projected wood production, bioenergy production, and carbon balance for three realistic intensification scenarios and a business-as-usual scenario. These intensification scenarios targeted either overstocked, harvest-delayed or currently actively managed stands.

Results

All three intensification strategies produced 11.6–12.4 million tonnes of oil equivalent per year of wood-based energy by 2026, which corresponds to the target assigned to French wood-energy to meet the EU 2020 renewable energy target. Sustaining this level past 2026 will be challenging, let alone further increasing it. Although energy production targets can be reached, the management intensification required will degrade the near-term carbon balance of the forestry sector, compared to continuing present-day management. Even for the best-performing intensification strategy, i.e., reducing the harvest diameter of actively managed stands, the carbon benefits would only become apparent after 2040. The carbon balance of a strategy putting abandoned forests back into production would only break even by 2055; the carbon balance from increasing thinning in managed but untended stands would not break even within the studied time periods, i.e. 2015–2045 and 2046–2100. Owing to the temporal dynamics in the components of the carbon balance, i.e., the biomass stock in the forest, the carbon stock in wood products, and substitution benefits, the merit order of the examined strategies varies over time.

Conclusions

No single solution was found to improve the carbon balance of the forestry sector by 2040 in a way that also met energy targets. We therefore searched for the intensification scenario that produces energy at the lowest carbon cost. Reducing rotation time of actively managed stands is slightly more efficient than targeting harvest-delayed stands, but in both cases, each unit of energy produced has a carbon cost that only turns into a benefit between 2060 and 2080.
  相似文献   
3.
We present a general recipe for constructing N -body realizations of galaxies comprising near spherical and disc components. First, an exact spherical distribution function for the spheroids (halo and bulge) is determined, such that it is in equilibrium with the gravitational monopole of the disc components. Second, an N -body realization of this model is adapted to the full disc potential by growing the latter adiabatically from its monopole. Finally, the disc is sampled with particles drawn from an appropriate distribution function, avoiding local-Maxwellian approximations. We performed test simulations and find that the halo and bulge radial density profile very closely match their target model, while they become slightly oblate due to the added disc gravity. Our findings suggest that vertical thickening of the initially thin disc is caused predominantly by spiral and bar instabilities, which also result in a radial re-distribution of matter, rather than scattering off interloping massive halo particles.  相似文献   
4.
The evolution of the Parisian urban climate under a changing climate is analyzed from long-term offline numerical integrations including a specific urban parameterization. This system is forced by meteorological conditions based on present-climate reanalyses (1970–2007), and climate projections (2071–2099) provided by global climate model simulations following two emission scenarios (A1B and A2). This study aims at quantifying the impact of climate change on air temperature within the city and in the surroundings. A systematic increase of 2-meter air temperature is found. In average according to the two scenarios, it reaches +?2.0/2.4°C in winter and +?3.5/5.0°C in summer for the minimum and maximum daily temperatures, respectively. During summer, the warming trend is more pronounced in the surrounding countryside than in Paris and suburbs due to the soil dryness. As a result, a substantial decrease of the strong urban heat islands is noted at nighttime, and numerous events with negative urban heat islands appear at daytime. Finally, a 30% decrease of the heating degree days is quantified in winter between present and future climates. Inversely, the summertime cooling degree days significantly increase in future climate whereas they are negligible in present climate. However, in terms of accumulated degree days, the increase of the demand in cooling remains smaller than the decrease of the demand in heating.  相似文献   
5.
A new Canadian numerical urban modelling system has been developed at the Meteorological Service of Canada to represent surface and boundary-layer processes in the urban environment. In this system, urban covers are taken into account by including the Town Energy Balance urban-canopy parameterization scheme in the Global Environmental Multiscale meteorological model. The new modelling system is run at 250-m grid size for two intensive observational periods of the Joint Urban 2003 experiment that was held in Oklahoma City, U.S.A. An extensive evaluation against near-surface and upper-air observations has been performed. The Town Energy Balance scheme correctly simulates the urban micro-climate, more particularly the positive nighttime urban heat island, and also reproduces the “cool” island during the morning but does not succeed in maintaining it during all of the daytime period. The vertical structure of the boundary layer above the city is reasonably well simulated, but the simulation of the nocturnal boundary layer is difficult, due to the complex interaction with the nighttime southerly low-level jet that crosses the domain. Sensitivity tests reveal that the daytime convective boundary layer is mainly driven by dry soil conditions in and around Oklahoma City and that the nighttime low-level jet reinforces the urban heat island in the first 300m through large-scale advection, leading to the development of a less stable layer above the city.  相似文献   
6.
We report the identification, from a photometric, astrometric and spectroscopic study, of a massive white dwarf member of the nearby, approximately solar metallicity, Coma Berenices open star cluster (Melotte 111). We find the optical to near-infrared energy distribution of WD 1216+260 to be entirely consistent with that of an isolated DA and determine the effective temperature and surface gravity of this object to be   T eff= 15 739+197−196 K  and  log  g = 8.46+0.03−0.02  . We set tight limits on the mass of a putative cool companion,   M ≳ 0.036 M  (spatially unresolved) and   M ≳ 0.034 M  (spatially resolved and   a ≲ 2500 au  ). Based on the predictions of CO core, thick H layer evolutionary models we determine the mass and cooling time of WD 1216+260 to be   M WD= 0.90 ± 0.04 M  and  τcool= 363+46−41 Myr  , respectively. For an adopted cluster age of  τ= 500 ± 100 Myr  we infer the mass of its progenitor star to be   M init= 4.77+5.37−0.97 M  . We briefly discuss this result in the context of the form of the stellar initial mass–final mass relation.  相似文献   
7.
8.
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980?C2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50?C80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.  相似文献   
9.
Assessing the collapse susceptibility of abandoned cavities at a regional scale is associated with large uncertainties that are mainly related to the very nature of the phenomena, but also to the difficulty in collecting exhaustive information at such a scale on often “forgotten” structures. In this context, the expert's role is essential, because he is able to synthesize the information resulting from the inventory and from the commonly imprecise, if not vague, criteria on the basis of his experience and his knowledge of the geological, historical, economic regional context.In this article, we propose mathematical tools for representing and processing this information in order to give flexibility to this step and manage the uncertainty inherent in the expert's information. The first tool, based on the weight of evidence theory, is for managing the uncertainty due to the heterogeneous spatial distribution of the data, whereas the second tool, based on the fuzzy set theory, is for managing the imprecision and incompleteness of available data, which hinder the definition of the class boundaries of the quantitative decision criteria. Based on an appropriate representation of the uncertainty sources (related to the input data and to the expert diagnostic), we then propose a methodology that integrates the uncertainty in the final output of the collapse susceptibility assessment and provides a confidence indicator useful within the decision-making process. The proposed methodology is applied to the Arras territory in the North of France, where abandoned chalk pits (dating back to the Roman ages) and war saps located in the vicinity of the First World War front lines (i.e. covered trenches), raise both difficulties for urban planning.  相似文献   
10.
In shallow coastal areas the amplitude and range of benthic silicic acid fluxes can have a significant influence on benthic–pelagic coupling and the functioning of the pelagic system. To explore the oscillation in fluxes over the diurnal cycle and in particular the influence of microphytobenthos (MPB), an experiment was carried out in a shallow subtidal site in the Bay of Brest (France). Benthic chambers were employed over a 48 h period to measure the variability in silicic acid and oxygen fluxes; MPB migration was investigated using a diving Pulse Amplitude Modulated (PAM) fluorometer and uptake rhythms of silicic acid by natural MPB populations were measured using the 32Si isotope. It was discovered that silicic acid fluxes fluctuated greatly throughout the diurnal period resulting in an oscillation in the availability of this nutrient for phytoplankton communities. The uptake of silicic acid by the MPB was quantified for the first time and highlighted a 2-fold increase in the demand from night to afternoon periods. The combined silicic acid uptake and the concentration of cells at the sediment–water interface, forming a dense biofilm of MPB, were postulated to be the main processes reducing effluxes at midday. Our work highlighted the many processes which influence silicic acid effluxes in shallow coastal areas and the possible interaction between uptake and dissolution processes. The variations in benthic fluxes over the diurnal period were comparable to observations reported at the seasonal scale. Therefore, up-scaling hourly flux observations to daily and annual estimates should be undertaken with caution. Further we suggest that the main processes influencing flux oscillations over the diurnal period should be considered when planning sampling strategies and extrapolating to larger time scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号