首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
大气科学   2篇
地球物理   3篇
地质学   4篇
海洋学   1篇
天文学   7篇
  2020年   1篇
  2018年   2篇
  2014年   1篇
  2010年   1篇
  2008年   2篇
  2002年   1篇
  1997年   1篇
  1995年   2篇
  1984年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有17条查询结果,搜索用时 328 毫秒
1.
We present H2CO observations of young protostar candidates in the Serpens Cloud Core. We find evidence for dense molecular gas in the cores of these objects that is warmer than the surrounding dust. The strong emission and gas properties support the premise that many of these sources may be very young protostars.  相似文献   
2.
One of the first operations in a seismic signal processing system applied to earthquake data is to distinguish between valid and invalid records. Since valid signals are characterized by a combination of their time and frequency properties, wavelets are natural candidates for describing seismic features in a compact way. This paper develops a seismic buffer pattern recognition technique, comprising wavelet-based feature extraction, feature selection based on the mutual information criterion, and neural classification based on feedforward networks. The ability of the wavelet transform to capture discriminating information from seismic data in a small number of features is compared with alternative feature reduction techniques, including statistical moments. Three different variations of the wavelet transform are used to extract features: the discrete wavelet transform, the single wavelet transform and the continuous wavelet transform. The mutual information criterion is employed to select a relatively small set of wavelets from the time–frequency grid. Firstly, it is determined whether wavelets can capture more informative data in an equal number of features compared with other features derived from raw data. Secondly, wavelet-based features are compared with features selected based on prior knowledge of class differences. Thirdly, a technique is developed to optimize wavelet features as part of the neural network training process, by using the wavelet neural network architecture. The automated classification techniques developed in this paper are shown to perform similarly to human operators trained for this function. Wavelet-based techniques are found to be useful, both for preprocessing of the raw data and for extracting features from the data. It is demonstrated that the definition of wavelet features can be optimized using the classification wavelet network architecture.  相似文献   
3.
Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for ‘safe separation’ between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale–aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.  相似文献   
4.
We present results from 20-year “high-resolution” regional climate model simulations of precipitation change for the sub-tropical island of Puerto Rico. The Japanese Meteorological Agency Non-Hydrostatic Model (NHM) operating at a 2-km grid resolution is nested inside the Regional Spectral Model (RSM) at 10-km grid resolution, which in turn is forced at the lateral boundaries by the Community Climate System Model (CCSM4). At this resolution, the climate change experiment allows for deep convection in model integrations, which is an important consideration for sub-tropical regions in general, and on islands with steep precipitation gradients in particular that strongly influence local ecological processes and the provision of ecosystem services. Projected precipitation change for this region of the Caribbean is simulated for the mid-twenty-first century (2041–2060) under the RCP8.5 climate-forcing scenario relative to the late twentieth century (1986–2005). The results show that by the mid-twenty-first century, there is an overall rainfall reduction over the island for all seasons compared to the recent climate but with diminished mid-summer drought (MSD) in the northwestern parts of the island. Importantly, extreme rainfall events on sub-daily and daily time scales also become slightly less frequent in the projected mid-twenty-first-century climate over most regions of the island.  相似文献   
5.
An environmental concern with hydraulic fracturing for shale gas is the risk of groundwater and surface water contamination. Assessing this risk partly involves the identification and understanding of groundwater–surface water interactions because potentially contaminating fluids could move from one water body to the other along hydraulic pathways. In this study, we use water quality data from a prospective shale gas basin to determine: if surface water sampling could identify groundwater compartmentalisation by low-permeability faults; and if surface waters interact with groundwater in underlying bedrock formations, thereby indicating hydraulic pathways. Variance analysis showed that bedrock geology was a significant factor influencing surface water quality, indicating regional-scale groundwater–surface water interactions despite the presence of an overlying region-wide layer of superficial deposits averaging 30–40 m thickness. We propose that surface waters interact with a weathered bedrock layer through the complex distribution of glaciofluvial sands and gravels. Principal component analysis showed that surface water compositions were constrained within groundwater end-member compositions. Surface water quality data showed no relationship with groundwater compartmentalisation known to be caused by a major basin fault. Therefore, there was no chemical evidence to suggest that deeper groundwater in this particular area of the prospective basin was reaching the surface in response to compartmentalisation. Consequently, in this case compartmentalisation does not appear to increase the risk of fracking-related contaminants reaching surface waters, although this may differ under different hydrogeological scenarios.  相似文献   
6.
Schloerb  F. P.  Devries  C. H.  Lovell  A. J.  Irvine  W. M.  Senay  M.  Wootten  H. A. 《Earth, Moon, and Planets》1997,78(1-3):45-51
Observations of comets in the 18-cm OH transitions offer a means to probe gas production, kinematics, and OH excitation in comets. We present initial results of OH observations of comet Hale-Bopp obtained with the NRAO 43 m antenna located in Greenbank, WV. Maps of the emission provide strong constraints on the amount of quenching of the inversion of the OH ground state Λ-doublet in the coma. Analysis of the total radio OH flux and maps of its radial brightness distribution indicate a quenched region on the order of ∼500,000 km during March and April 1997. This large value is generally consistent with previous observations of radio OH quenching in lower production rate comets when the high production rate of comet Hale-Bopp is considered. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
We discuss observations of the first galaxies, within cosmic reionization, at centimeter and millimeter wavelengths. We present a summary of current observations of the host galaxies of the most distant QSOs (z∼6). These observations reveal the gas, dust, and star formation in the host galaxies on kpc-scales. These data imply an enriched ISM in the QSO host galaxies within 1 Gyr of the big bang, and are consistent with models of coeval supermassive black hole and spheroidal galaxy formation in major mergers at high redshift. Current instruments are limited to studying truly pathologic objects at these redshifts, meaning hyper-luminous infrared galaxies (L FIR ∼1013 L ). ALMA will provide the one to two orders of magnitude improvement in millimeter astronomy required to study normal star forming galaxies (i.e. Ly-α emitters) at z∼6. ALMA will reveal, at sub-kpc spatial resolution, the thermal gas and dust—the fundamental fuel for star formation—in galaxies into cosmic reionization.  相似文献   
8.
The Atacama Large Millimeter/submillimeter Array (ALMA) (The Enhanced Atacama Large Millimeter/submillimeter Array (known as ALMA) is an international astronomy facility. ALMA is a partnership between North America, Europe, and Japan/Taiwan, in cooperation with the Republic of Chile, and is funded in Europe by the European Southern Observatory (ESO) and Spain, in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Japan by the National Institutes of Natural Sciences (NINS) in cooperation with the Academia Sinica in Taiwan. ALMA construction and operations are led on behalf of Japan/Taiwan by the National Astronomical Observatory of Japan (NAOJ), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO) combines large collecting area and location on a high dry site to provide it with unparalleled potential for sensitive millimeter/submillimeter spectral line observations. Its wide frequency coverage, superb receivers and flexible spectrometer will ensure that its potential is met. Since the 1999 meeting on ALMA Science (Wootten, ASP Conf. Ser. 235, 2001), the ALMA team has substantially enhanced its capability for line observations. ALMA’s sensitivity increased when Japan joined the project, bringing the 16 antennas of the Atacama Compcat Array (ACA), equivalent to eight additional 12 m telescopes. The first four receiver cartridges for the baseline ALMA (Japan’s entry has brought two additional bands to ALMA’s receiver retinue) have been accepted, with performance above the already-challenging specifications. ALMA’s flexibility has increased with the enhancement of the baseline correlator with additional channels and flexibility, and with the addition of a separate correlator for the ACA. As an example of the increased flexibility, ALMA is now capable of multi-spectral-region and multi-resolution modes. With the former, one might observe e.g. four separate transitions anywhere within a 2 GHz band with a high resolution bandwidth. With the latter, one might simultaneously observe with low spectral resolution over a wide bandwidth and with high spectral resolution over a narrow bandwidth; this mode could be useful for observations of pressure-broadened lines with narrow cores, for example. Several science examples illustrate ALMA’s potential for transforming millimeter and submillimeter astronomy.  相似文献   
9.
The Carolina Sandhills are known to have an area of maximum precipitation on its western boundary during the summer mainly due to differences in soil types. Statistical analysis was performed on summer precipitation data from automated weather stations in the Carolinas, along the Sandhills for the years 2001 to 2006. Statistically significant difference was observed between the day and night precipitation amounts. A case study also revealed the diurnal pattern of convective precipitation.  相似文献   
10.
The northwestern part of South Africa and southern South-West Africa/Namibia is amongst the most extensive granulite terranes in Africa. This work reports the results of electron microprobe studies of minerals from two-pyroxene, cordieriteorthopyroxene (-gedrite) (-sapphirine) and garnet and/or cordierite parageneses from Namaqualand, in the N.W. Cape Province of South Africa. Determined PT conditions of prograde metamorphism based on thermodynamic calculations are 800°–900° C and ca. 6–7 Kb; and it is argued that rocks of unusual composition, notably cordierite-orthopyroxene rocks, are restites after the extraction of granitic liquid from former argillites. This interpretation is consistent with previously published data on similar rocks, and with McCarthy's (1976) suggestion of extensive partial melting in the quartzofeldspathic rocks in the area. U-Pb isotopic studies of some 50 zircon fractions have been carried out and confirm an age of 1,200 m.y. for the high-grade regional metamorphism; but certain zircon populations record inherited ages greater than 1,700 m.y. Garnet-sillimanite rocks that contain retrograde kyanite reflect PT conditions of 550°–650° C and ca. 7–8 Kb; and constituent biotite has yielded a K-Ar age of ca. 950 m.y. These data, the regional stratigraphy and structure, and the mineralisation are compared with data from the Grenville Province of Canada. Notable similarities are the possible basement-cover relationships, and the calendar of tectonothermal events, while differences include the important stratiform base-metal mineralisation in the supracrustal sequence in Namaqualand, and the Cu-mineralisation in hypersthenebearing intrusives, emplaced some 1,100 m.y. ago, that are areally, and believed to be genetically, related to the granulite facies metamorphic regime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号