首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
天文学   3篇
  2023年   1篇
  2014年   2篇
排序方式: 共有3条查询结果,搜索用时 328 毫秒
1
1.
L波段太阳射电爆发是导航系统不稳定的潜在影响因素,通过L波段内精密太阳射电流量的监测可以实时发现太阳射电爆发干扰导航事件,为此,云南天文台拟建立一个L波段多频点太阳射电监测系统。无线电环境的有效评估对于该监测系统观测数据的稳定获取至关重要。介绍了监测平台的无线电监测准备研究,通过对云南天文台L波段无线电环境进行100 h的测试,提出一种基于Simple Thresholding算法和CUSUM(Cumulative Sum)算法的改进阈值算法,遴选出介于北斗B1, B2和B3频点,全球定位系统L1和L2频点之间7个5 MHz无线电干扰较少的无线电通带,分别为1 551~1 555 MHz, 1 596~1 600 MHz, 1 161~1 165 MHz, 1 221~1 225 MHz, 1 246~1 250 MHz, 1 291~1 295 MHz和1 231~1 235 MHz,其洁净率分别为98.329%, 98.301%, 98.315%, 98.335%, 98.224%, 97.650%和98.260%,均符合太阳观测需求,为下一步接收机的设计和信号处理提供了依据。  相似文献   
2.
位于云南天文台凤凰山本部的10 m太阳射电望远镜是中国太阳射电物理界重要的观测设备之一,其设计之初,800~975 MHz频段受到移动电话的严重干扰,不能正常工作,因此缺失这一频段的观测资料。近年来,随着微波和数字器件性能的提升以及移动电话工作频段的改变,使得这一重要频段的观测变得可行。针对800~975 MHz频段的太阳射电天文信号,提出了一种基于现场可编程门阵列(Field Programmable Gate Array,FPGA)和千兆以太网的实时采集与处理方法。在数据采集和处理过程中,系统采用流水线方式,得到了太阳射电信号的实时频谱图;采用硬件描述语言Verilog实现了千兆以太网的数据传输,提高了传输效率;另外本系统采用分时传输机制,完成千兆以太网的UDP数据包的传输。最后还对所得数据进行了误差分析和结果分析,证明了本文提出的实时信号采集、分析和传输方法的正确性和可靠性。  相似文献   
3.
介绍了云南天文台10 m太阳射电望远镜800~975 MHz模拟接收机的研制。接收系统采用射频-中频两级放大+远程控制步进衰减器模式,能方便地通过远程界面控制射频或中频链路的增益倍数,使得整个接收机动态范围在-35 dB-+25 dB。这样的设计防止在该频段强RFI信号造成的接收机饱和,并且获得了大动态范围,能够满足强射电爆发的要求,弥补了10 m射电望远镜的缺省频段。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号