首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
海洋学   1篇
  2003年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
A generic integrated sensory-intelligent system (ISIS) is developed for underwater acoustic signal-processing applications. ISIS constantly monitors the current acoustic channel conditions and smoothly integrates the outputs of the most appropriate signal-processing procedures or algorithms available to it for those conditions. The system is based on a generalization of a tuneable approximate piecewise linear (TAPL) model derived from the modified probabilistic neural network (MPNN). This model was designed to seamlessly integrate a set of local linear signal-processing algorithms within a given multidimensional data space. Depending on the input signal distortions, which are determined by environmental effects, ISIS automatically weighs and adds the outputs from a set of processing algorithms working in parallel. The weighting is related to the "closeness" of each algorithm to the sensed input signal characteristics or some other measured environmental state. A single tuning parameter is used to smoothly and seamlessly select appropriately among the parallel processing algorithm outputs. A very small tuning-parameter value selects the closest most appropriate algorithm output. At the other extreme, a fixed weighted average of all the algorithm outputs is produced with a very large value. Otherwise, a dynamic weighed average of all algorithm outputs is achieved with values in between. Some features and benefits of ISIS are demonstrated with an illustrative linear sweep chirp signal-detector estimation problem characterized by extremely variable Doppler conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号