首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   3篇
地质学   2篇
海洋学   1篇
  2021年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
Biogenic barium, mostly in the barite (BaSO4) form, has been proposed as a tracer for export production in the ocean. Here we report on biogenic barium (Baxs) and particulate organic carbon (POC) fluxes from sediment traps deployed at the DYFAMED site in the Northwestern Mediterranean Sea. Baxs fluxes display average values of 37 ± 45 and 50 ± 58 μg/m2/d at 200 and 1000 m respectively, and are linearly correlated to POC fluxes (mean values of 7.9 ± 9.3 and 6.8 ± 6.8 mg C/m2/d at 200 and 1000 m). Export production estimates, calculated using published Baxs- or POC-based algorithms, all fall below or close to the lower limit of potential export values proposed in the literature. This work clearly demonstrates the usefulness of Baxs as a tracer of oceanic export production in the Northwestern Mediterranean Sea. However, development of a quantitative export production proxy requires a clear understanding of the underlying cause(s) for the observed spatial variations in the relationship between Baxs and POC fluxes. The present study confirms that the processes leading to barite formation differ between margin and open-ocean sites and probably account for much of the regional variability in the POC/Baxs ratio.  相似文献   
2.
Much is known about how climate change impacts ecosystem richness and turnover, but we have less understanding of its influence on ecosystem structures. Here, we use ecological metrics (beta diversity, compositional disorder and network skewness) to quantify the community structural responses of temperature-sensitive chironomids (Diptera: Chironomidae) during the Late Glacial (14 700–11 700 cal a bp ) and Holocene (11 700 cal a bp to present). Analyses demonstrate high turnover (beta diversity) of chironomid composition across both epochs; however, structural metrics stayed relatively intact. Compositional disorder and skewness show greatest structural change in the Younger Dryas, following the rapid, high-magnitude climate change at the Bølling–Allerød to Younger Dryas transition. There were fewer climate-related structural changes across the early to mid–late Holocene, where climate change was more gradual and lower in magnitude. The reduced impact on structural metrics could be due to greater functional resilience provided by the wider chironomid community, or to the replacement of same functional-type taxa in the network structure. These results provide insight into how future rapid climate change may alter chironomid communities and could suggest that while turnover may remain high under a rapidly warming climate, community structural dynamics retain some resilience.  相似文献   
3.
The global wavelet energy spectrum (GWES) has been used on one-dimensional transects of porous media to identify the characteristic length scale of a material property. The characteristic length scale is a measure of the distance over which property values are correlated. We extend the wavelet analysis technique to two-dimensional stationary porous media for identifying both the characteristic length scales and orientation of heterogeneity. We theoretically develop and evaluate the GWES for isotropic and anisotropic random fields using the two-dimensional Mexican hat wavelet. The relationship between the wavelet scale and the characteristic length scale of a two-dimensional random field is investigated for different covariance structures. The ability of the GWES to identify multiple characteristic length scales and orientations in a random field with nested covariance structures is also investigated. We use the technique to identify the characteristic length scales of a log hydraulic conductivity field used in a laboratory experiment.  相似文献   
4.
Backward location and travel time probabilities can be used to characterize known and unknown sources or prior positions of ground water contamination. Backward location probability describes the position of the observed contamination at some time in the past; backward travel time probability describes the amount of time prior to observation that the contamination was released from its source or was at a particular upgradient location. The governing equation for backward probabilities is the adjoint of the governing equation for contaminant transport, but with new load terms. Numerical codes that have been written to solve the forward equations of contaminant transport, e.g., the advection-dispersion equation, can also be used to solve the adjoint equation for location and travel time probabilities; however, the interpretation of the results is different and some new approximations must be made for the load terms. We present the governing equations for backward location and travel time probabilities, and provide appropriate numerical approximations for these load terms using the cell-centered finite difference method, one of the most popular numerical methods in ground water hydrology. We discuss some additional numerical considerations for the backward model including boundary conditions, reversal of the flow field, and interpretation of the results. We illustrate the implementation of the backward probability model using hypothetical examples in one- and two-dimensional domains. We also present a three-dimensional application of a pump-and-treat remediation capture zone delineation at the Massachusetts Military Reservation. The illustrations are performed using MODFLOW-96 for flow simulations and MT3DMS for transport simulations.  相似文献   
5.
An accurate representation of permeability anisotropy is needed to model the rate and direction of groundwater flow correctly. We develop a wavelet analysis technique that can be used to characterize principal directions of anisotropy in both stationary and non-stationary permeability fields. Wavelet analysis involves the integral transform of a field using a wavelet as a kernel. The wavelet is shifted, scaled, and rotated to analyze different locations, sizes, and orientations of the field. The wavelet variance is used to identify scales and orientations that dominate the field. If the field is non-stationary, such that different zones of the field are characterized by different dominant scales or orientations, the wavelet variance can identify all dominant scales and orientations if they are distinct. If the dominant scales and orientations of different zones are similar, the wavelet variance identifies only the dominant scale and orientation of the primary zone. In this paper, we present a combined wavelet analysis and filtering approach to identify all dominant scales and orientations in a non-stationary permeability field. We apply the method to permeability data obtained in the laboratory from the Massillon sandstone.  相似文献   
6.
If an aquifer is hydraulically connected to an adjacent stream, a pumping well operating in the aquifer will draw some water from aquifer storage and some water from the stream, causing stream depletion. Several analytical, semi-analytical, and numerical approaches have been developed to estimate stream depletion due to pumping. These approaches are effective if the well location is known. If a new well is to be installed, it may be desirable to install the well at a location where stream depletion is minimal. If several possible locations are considered for the location of a new well, stream depletion would have to be estimated for all possible well locations, which can be computationally inefficient. The adjoint approach for estimating stream depletion is a more efficient alternative because with one simulation of the adjoint model, stream depletion can be estimated for pumping at a well at any location. We derive the adjoint equations for a coupled system with a confined aquifer, an overlying unconfined aquifer, and a river that is hydraulically connected to the unconfined aquifer. We assume that the stage in the river is known, and is independent of the stream depletion, consistent with the assumptions of the MODFLOW river package. We describe how the adjoint equations can be solved using MODFLOW. In an illustrative example, we show that for this scenario, the adjoint approach is as accurate as standard forward numerical simulation methods, and requires substantially less computational effort.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号