首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   1篇
海洋学   2篇
  2010年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
In studies on river channel flow turbulence, it is often the case that the measured mean vertical velocity is different from zero, indicating that the frame of reference of the current meter is not parallel to the flow streamline. This situation affects the estimate of Reynolds shear stress in the streamwise and vertical planes and consequently the analysis of the flow turbulent structure. One way to solve this problem is to correct data by applying a rotation and this is reviewed in the first part of the paper. However, in fluvial geomorphology, the studied flow is often complex and streamlines may exhibit significant changes from one point of measurement to the other. In this context, applying a rotation complicates the situation more than it simplifies it. The second part of this paper examines the question of velocity data correction in complex flows using a field example of the turbulent boundary layer over a very rough gravel bed and a laboratory example taken from flow at a river channel confluence. In both cases, velocity vectors are spatially variable. In the first case, errors in the Reynolds shear stress estimates are relatively low (ranging from −13 to 7 per cent/deg) while in the second case, they are much larger (−200 to 164 per cent/deg). The significance of these errors on the interpretation of turbulence statistics in river channel flows is discussed. We propose that corrections should be applied in all clear cases of sensor misalignment and when the frame of reference changes spatially and temporally. However, no corrections should be used where different flow velocity vector orientations, not sensor misalignment, are responsible for the mean vertical velocity differing from zero.  相似文献   
2.
3.
Recent decadal salinity changes in the Greenland-Scotland overflow-derived deep waters are quantified using CTD data from repeated hydrographic sections in the Irminger Sea. The Denmark Strait Overflow Water salinity record shows the absence of any net change over the 1980s–2000s; changes in the Iceland–Scotland Overflow Water (ISOW) and in the deep water column (σ0 > 27.82), enclosing both overflows, show a distinct freshening reversal in the early 2000s. The observed freshening reversal is a lagged consequence of the persistent ISOW salinification that occurred upstream, in the Iceland Basin, after 1996 in response to salinification of the northeast Atlantic waters entrained into the overflow. The entrainment salinity increase is explained by the earlier documented North Atlantic Oscillation (NAO)-induced contraction of the subpolar gyre and corresponding northwestward advance of subtropical waters that followed the NAO decline in the mid-1990s and continued through the mid-2000s. Remarkably, the ISOW freshening reversal is not associated with changes in the overflow water salinity. This suggests that changes in the NAO-dependent relative contributions of subpolar and subtropical waters to the entrainment south of the Iceland–Scotland Ridge may dominate over changes in the Nordic Seas freshwater balance with respect to their effect on the ISOW salinity.  相似文献   
4.
Lake-level fluctuations in the Jura mountains (France) during the Younger Dryas and the early Holocene are reconstructed using sedimentological analyses. Major transgressive phases culminated just before the Laacher See tephra deposition, at the beginning of the Younger Dryas, between 9000 and 8000 BP and between 7000 and 6000 BP. The Younger Dryas appears to be characterized by increasing dryness. Other major lowering phases occurred during the middle Allerød and during the Preboreal. A transgressive event developed between c . 9700 and 9500 BP. These palaeohydrological changes can be related to climatic oscillations reconstructed from pollen and isotopic records in Swiss lakes, from glacier movements and timberline variations in the Alps, and from isotopic records in the Greenland ice sheet.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号