首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
地球物理   2篇
海洋学   5篇
自然地理   2篇
  2018年   1篇
  2017年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Porewater nutrient dynamics during emersion and immersion were investigated during different seasons in a eutrophic intertidal sandflat of Tokyo Bay, Japan, to elucidate the role of emersion and immersion in solute transport and microbial processes. The water content in the surface sediment did not change significantly following emersion, suggesting that advective solute transport caused by water table fluctuation was negligible. The rate of change in nitrate concentration in the top 10 mm of sediments ranged from −6.6 to 4.8 μmol N l−1 bulk sed. h−1 during the whole period of emersion. Steep nutrient concentration gradients in the surface sediment generated diffusive flux of nutrients directed downwards into deeper sediments, which greatly contributed to the observed rates of change in porewater nutrient concentration for several cases. Microbial nitrate reduction within the subsurface sediment appeared to be strongly supported by the downward diffusive flux of nitrate from the surface sediment. The stimulation of estimated nitrate production rate in the subsurface layer in proportion to the emersion time indicates that oxygenation due to emersion caused changes in the sediment redox environment and affected the nitrification and/or nitrate reduction rates. The nitrate and soluble reactive phosphorus pools in the top 10 mm of sediment decreased markedly during immersion (up to 68% for nitrate and up to 44% for soluble reactive phosphorus), however, this result could not be solely explained by molecular diffusion.  相似文献   
2.
We examined algal remains and fossil pigments in 210Pb-dated sediment cores from Lake Biwa to explore historical changes in the phytoplankton community of the lake over the past 100 years and to identify environmental factors that caused those changes. Fluxes of fossil pigments and algal remains were very low before the 1960s, but increased through the 1960s and 1970s, indicating that the lake had eutrophied in the 20 years since 1960. After 1980, however, fluxes of all fossil pigments and algal remains decreased or stabilized. Redundancy analysis with meteorological and limnological variables explained more than 70% of the variation of these fluxes and showed that the decrease in fluxes of most algal taxa that occurred in the 1980s was related to changes in meteorological variables such as wind velocity, rather than changes in the lake’s trophic state. Sedimentary records of algal remains also revealed that Aulacoseira nipponica, an endemic diatom species that grows in winter, decreased dramatically after 1980, while Fragilaria crotonensis, a cosmopolitan spring diatom species, became dominant. Replacement of one dominant diatom species by another could not be explained simply by changes in the lake trophic state, but was reasonably strongly related with an increase in winter water temperature. These results suggest that the phytoplankton community in Lake Biwa was influenced by changes in local environmental conditions (nutrient loading) through the 1960s and 1970s, but more so by regional (meteorological) and global (climate warming) factors since 1980.  相似文献   
3.
In order to examine the responses of primary productivity in the southern coastal sea of Japan to the Pacific Decadal Oscillation (PDO) in the 20th century, sedimentary records of diatom productivity (diatom valve fluxes) were reconstructed using core samples from the Bungo Channel (BC) in southwest Japan. The record of the Thalassionema spp. flux—the best index of fall primary productivity in the BC—indicated a multidecadal-scale duration with a low flux (1943–1982) and those with a high flux (1913–1943 and 1982–2001); apparent shifts were recognized in 1943 and 1982. The shift in 1982 was also recognized in the flux records of other early summer to fall predominant genera in the BC and, previously, in the biogenic silica records from a broad region of the southeast BC. This indicates that in our records, this shift reflects a general trend in the primary production in the southeast BC. A comparison among the Thalassionema spp. flux records, meteorological data from an observatory adjacent to the core site, and the PDO index showed that the flux records were more similar to the PDO index than the other meteorological records, which suggests that the multidecadal-scale variability of the BC primary productivity may be associated with some marine-derived forcing. The bottom intrusions of nutrient-rich water that upwelled from the shelf slope into the BC, the axis movement or the transport of the Kuroshio Current off the BC, and a basin-scale wind stress in the North Pacific might play an important role in this forcing and mediate between the BC primary productivity and the PDO.  相似文献   
4.
The pipe microphone has been shown to be an effective means for monitoring bedload transport in mountain streams. It is commonly installed perpendicular to the flow direction on a stable river bed, such as that of a check dam. Acoustic pulses caused by bedload collisions with the pipe are detected by a microphone. However, bedload particles saltating over the pipe remain undetected. To overcome this disadvantage, we installed a horizontal as well as a vertical pipe microphone in the Ashi‐arai‐dani supercritical channel located in the Hodaka mountain range, Japan. The vertical pipe was installed on the wall of the channel and the horizontal pipe was installed on the channel bed. The acoustic response of the horizontal pipe is expected to be larger than that of the vertical pipe, because the bedload concentration decreases with increasing height above the bed. However, at high amplifications, the peak pulse value from the vertical pipe is higher than that from the horizontal pipe. We explain this observation as follows: under high bedload discharge conditions, the pulses of the horizontal pipe are saturated but those of the vertical pipe are not. We proposed a ratio (Rhv) between the pulses detected by these sensors, and applied this ratio for calibrating the contemporaneous pulses detected by a microphone located immediately upstream of a bedload slot sampler. Indeed the Rhv‐corrected pulses correlated well with the bedload discharge calculated from the sampler, supporting our explanation. We conclude that bedload monitoring using concomitant vertical and horizontal pipe microphones can be used to calibrate centrally located pipe microphones when the bedload concentration is approximately homogeneous laterally across the width of the channel cross‐section, and thereby represent bedload discharges more accurately than with only a single pipe microphone. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
5.
Recently, energy service providers (ESP) have increased due to deregulation in the power market. They install energy supply equipment at their own cost and supply the necessary energy to the client. The Tokyo Metropolitan Government started Asia’s first cap-and-trade program in April 2010. This program caps energy-related carbon dioxide emissions from some 1,330 offices and factories in Tokyo. Then, ESPs have to manage the many risks of energy service project directly linked to the profits. In this paper, we describes the risk analysis and investment optimization for energy service projects using financial engineering.  相似文献   
6.
To reconstruct the pattern of past climate change in central Japan during the last 140 kyr, total planktonic diatom valve concentrations (valves g–1) and fluxes (valves cm–2 year–1) of total planktonic diatoms flux (PVF) and individual species were examined using a 140-m core taken from Lake Biwa, Shiga Prefecture. Most records had a sample resolution between approximately 150 and 300 yr. Based on characteristics of past and modern diatom responses to possible climate variables, we interpreted changes in Stephanodiscus suzukii flux (SVF) to reflect changes in phosphorus levels, which reflect, in turn, summer precipitation levels; changes in Aulacoseiva nipponica flux (AVF) reflect winter vertical lake-water mixing induced by winter temperatures and snowfall levels. Thus, changes in total planktonic diatom flux reflect a combination of summer precipitation, winter temperature, and snowfall values. During the 140–101 ka interval, changes in S. suzukii productivity at a millennial timescale may correspond to changes in summer rainfall in central Japan. The disappearance of A. nipponica during the same period could indicate weaker vertical mixing, possibly caused by increased temperatures and decreased snowfall levels in winter. During the 101–70 ka interval, the AVF record shows levels near or above those observed in present times, indicating that winter water temperatures fell within the optimal range for A. nipponica to prosper. Generally low AVF values during the 70–7 ka interval indicate weak winter vertical mixing and cold winters. The many intervals with low PVF values during the same period suggest decreased summer precipitation levels. Between 7 and 0 ka, PVF, SVF, and AVF records show levels near or above those of the present, suggesting winter temperatures favorable for A. nipponica growth, and snowfall and summer precipitation levels probably similar to or above those currently recorded.  相似文献   
7.
This study determined the factors contributing to the spatial distribution of 14 metal concentrations in the surface sediments of Beppu Bay on the basis of comparisons of the organic geochemical properties and environmental parameters through principal component analysis (PCA) and redundancy analysis (RDA). The results of PCA and RDA showed that the concentrations of V, Cr, Co, and As were closely related to the distances between the sampling sites and the Oita River. This indicated that these metals originated from the river's drainage area. The Mn, Cu, Mo, and Cd concentrations were related to the water depth. These results indicated that the Mo, Cd, and Cu deposition processes were controlled by oxygen depletion, and that these elements accumulated in the deeper parts of the bay under anoxic conditions.  相似文献   
8.
We estimated the composition of two food sources for the cultured pearl oyster Pinctada fucata martensii using stable isotopes and stomach content analysis in the coastal areas of the Uwa Sea, Japan. The δ13C values of oysters (−17.5 to −16.8‰) were intermediate between that of particulate organic matter (POM, −20.2 to −19.1‰) and attached microalgae on pearl cages (−13.0‰). An isotope mixing model suggested that oysters were consuming 78% POM (mainly phytoplankton) and 22% attached microalgae. The attached microalgal composition of the stomach content showed a strong resemblance to the composition of that estimated through the isotope mixing model, suggesting preferential utilization of specific components is unlikely in this species. These results indicate that P. fucata martensii feed on a mixture of phytoplankton and attached microalgae, and that the attached microalgae on pearl cages can serve as an important additional food source.  相似文献   
9.
We examined fossil pigments in a 210Pb-dated sediment core to document the temporal variations in phytoplankton biomass over the past 150 years in a semi-enclosed bay, Beppu Bay, in the western Seto Inland Sea, Japan. The flux of fossil pigments was used as an index of phytoplankton biomass, which we reconstructed after removing the effect of post-burial degradation on the concentrations of fossil pigments. The flux doubled from the 1960s to the early 1970s, decreased or remained stable in the early 1980s, and increased again from the late 1980s to the early 1990s. The first increase in phytoplankton biomass during the 1960s was likely caused by eutrophication due to an increase in terrestrial nutrient fluxes from watersheds. The decreasing phytoplankton biomass in the early 1980s was likely related to the establishment of a sewage treatment system that reduced the terrestrial nutrient fluxes to the sea. However, the terrestrial nutrient fluxes could not explain the second increase from the late 1980s to the early 1990s. Intensification of the influx of nutrients from the shelf slope to the sea was likely the cause of the second increase in phytoplankton biomass. This is supported by the inverse relationship between phytoplankton biomass and sea level at the shelf slope, the latter being an index of the intensity of the influx of oceanic nutrients from the shelf slope to the sea. The supply of oceanic nutrients may be therefore a critical factor in the determination of primary production in the western Seto Inland Sea.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号