首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
海洋学   5篇
  2022年   1篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
Rapid economic developments in East Asian countries have inevitably resulted in environmental degradation in the surrounding seas, and concern for both the environment and protection from pollutants is increasing. Identification of sources of contaminants is essential to environmental pollution management. In this study, the provenance of anthropogenic lead (Pb), a major pollutant of Yellow Sea sediments, was determined for river mouth sediments, including those of the Changjiang, Huanghe, Han, and Geum Rivers, and for age-determined shelf core sediments through the measurement of Pb isotope ratios in the HCl-leached fraction using multi-collector inductively coupled plasma-mass spectrometry (MC ICP/MS). Anthropogenic Pb has accumulated in shelf core sediments since 1910, and its isotope ratios were estimated as 0.863–0.866 and 2.119–2.125 for 207Pb/206Pb and 208Pb/206Pb, respectively, from the mixing relationships of the two endmembers. River mouth sediments exhibited enough distinction in anthropogenic Pb isotope ratios to be discriminated: 0.874 (2.144) in the Huanghe, 0.856 (2.129) in the Han, 0.857 (2.122) in the Geum, and 0.854 (2.101) in the Changjiang for 207Pb/206Pb (208Pb/206Pb), respectively. Although isotope ratios of geogenic Pb in sediments dating before 1910 showed narrow ranges (0.842–0.845 and 2.088–2.100 for 207Pb/206Pb and 208Pb/206Pb, respectively), distinct isotope ratios in each core permitted source identification of sediments in the Yellow Sea based on geographic locations and the geogenic Pb of each river. By comparing the isotope ratios of the estimated anthropogenic Pb to source-related materials, the provenances of anthropogenic Pb in Chinese river sediments were presumed to be Chinese coal or ore, which is also a major source of atmospheric particulate Pb. The anthropogenic Pb in the shelf core sediments in the northern Yellow Sea originated from northern Chinese cities such as Beijing and Tianjin through atmospheric pathways. Pb isotope ratios indicated that Pb in Korean river sediments was characteristic of local Korean ores.  相似文献   
2.
To investigate the factors controlling lead (Pb) concentration and identify the sources of Pb in Yellow Sea sediments along the Korean coast, the concentration of Pb and Pb isotopes in 87 surface and 6 core sediment samples were analyzed. The 1 M HCl leached Pb concentrations had a similar geographic distribution to those of fine-grained sediments, while the distribution of residual Pb concentrations resembled that of coarse-grained sediments. Leached Pb was presumed to be associated with manganese (Mn) oxide and iron (Fe) oxy/hydroxide, while residual Pb was associated with potassium (K)-feldspar, based on good linear relationships between the leached Pb and the Fe/Mn concentrations, and the residual Pb and K concentrations. Based on a ratio–ratio plot with three isotopes (207Pb/206Pb and 208Pb/206Pb) and the geographic location of each sediment, sediments were categorized into two groups of samples as group1 and group2. Group 1 sediments, which were distributed in Gyeonggi Bay and offshore (north of 36.5°N), were determined to be a mixture of anthropogenic and natural Pb originating from the Han River, based on a 208Pb/206Pb against a Cs/Pbleached mixing plot of core and surface sediments. Group 2 sediments, which were distributed in the south of 36.5°N, also showed a two endmembers mixing relationship between materials from the Geum River and offshore materials, which had very different Pb concentrations and isotope ratios. Based on the isotopes and their concentrations in core and surface sediments, this mixing relationship was interpreted as materials from two geographically different origins being mixed, rather than anthropogenic or natural mixing of materials with the same origin. Therefore, the relative percentage of materials supplied from the Geum River was calculated using a two endmembers mixing model and estimated to be as much as about 50% at 35°N. The spatial distribution of materials derived from the Geum River represented that of fine-grained sediments originating from the Geum River. It was concluded that Pb isotopes in sediments could be used as a tracer in studies of the origin of fine-grained sediments along the Korean Yellow Sea coast.  相似文献   
3.
Total dissolvable metals (Co, Ni, Cu, Cd, and Pb) in both surface waters and the water columns were acquired in the southern East/Japan Sea during a cruise around the Ulleung Basin in June 2001 to understand the spatial distributions of the metals. Concentrations in offshore surface waters were found to be Co 60 ± 12 pM, Ni 2.16 ± 0.25 nM, Cu 1.85 ± 0.55 nM, Cd 0.134 ± 0.018 nM, and Pb 155 ± 40 pM. Spatial distributions in surface waters showed that metal levels were generally enhanced at coastal sites in both Korea and Japan, where the metal distributions indicated complex patterns due to inputs, biogeochemical processes, and physical factors including upwelling. The Co distributions in the water columns seemed to be influenced predominantly by surface and bottom inputs, scavenged rather than regenerated at depth. For Cd, there was generally good agreement between the Cd and PO4 depth distributions, in agreement with the literature. The Cd/PO4 ratio from the water columns was found to be 0.133–0.203, lower than that in other marginal seas (e.g. the East/South China Seas and the Philippine Sea) of the western Pacific Ocean; this might be a result of the fast ventilation rate in this sea. The vertical Pb profile showed typical scavenged-type behavior with a surface maximum and deep minimum. From a comparison of inputs from the atmosphere and the Tsushima Warm Current, atmospheric deposition is substantial enough that it cannot be ignored, and its role in metal cycling is more significant in the offshore zone.  相似文献   
4.
Export fluxes of particulate organic carbon (POC) were estimated from the 234Th/238U disequilibrium in the Ulleung Basin1 (UB) of the East/Japan Sea1 (EJS) over four seasons. The fluxes were calculated by multiplying the average POC/234Th ratio of sinking particles larger than 0.7 μm at 100- and 200-m water depths to 234Th fluxes by the integrated 234Th/238U disequilibrium from the surface to 100-m water depth. In spring, the 234Th profiles changed dramatically with sampling time, and hence a non-steady-state 234Th model was used to estimate the 234Th fluxes. The 234Th flux estimated from the non-steady-state model was an order of magnitude higher than that estimated from the steady-state model. The 234Th fluxes estimated using the steady-state model showed distinct seasonal variation, with high values in summer and winter and low values in autumn. In spring, the phytoplankton biomass had the highest value, and primary production was higher than in summer and autumn, but the 234Th fluxes were moderate. However, these values might have been significantly underestimated, as the 234Th fluxes were estimated using the steady-state model. The POC export fluxes estimated in autumn were about four times lower than those in other seasons when they were rather similar. The annually averaged POC flux was estimated to be 161 ± 76 mgC m−2 day−1, which was somewhat lower than that in highly productive coastal areas, and higher than that in oligotrophic regions. The export/primary production (ThE) ratios ranged from 7.0 to 56.1%, with higher values in spring and summer and lower values in autumn and winter. In summer, a high ThE ratio of 48.4 ± 7.0% was measured. This may be attributed to the mass diatom sinking event following nitrate depletion. In the UB1, the annually averaged ThE ratio was estimated to be 34.4 ± 12.9%, much higher than that in oligotrophic oceans. The high ThE ratio may have contributed to the high organic carbon accumulation in the UB1.  相似文献   
5.
Marine mussels (Mytilus) are widely used as bioindicators to measure pollution in marine environments. In this study, (1)H NMR spectroscopy and multivariate statistical analyses were used to differentiate mussel groups from a heavy metal-polluted area (Onsan Bay) and a clean area (Dokdo area). Principal component analysis and orthogonal projection to latent structure-discriminant analysis revealed significant separation between extracts of mussels from Onsan Bay and from the Dokdo area. Organic osmolytes (betaine and taurine) and free amino acids (alanine, arginine, glutamine, phenylalanine, and threonine) were more highly accumulated in Onsan Bay mussels compared with Dokdo mussels. These results demonstrate that NMR-based metabolomics can be used as an efficient method for characterizing heavy metal contamination derived from polluted area compared to clean area and to identify metabolites related to environments that are contaminated with heavy metals.  相似文献   
6.
Choi  Seonghu  Choi  Man-Sik  Joe  Dongjin  Park  Sojung  Kim  Jinwoo  Ra  Kongtae  Kim  Intae  Kim  Kyung-Tae  Lee  Kyoung-Seok  Lim  Jean-Sun 《Ocean Science Journal》2022,57(3):436-450
Ocean Science Journal - The spatial distributions of dissolved lead (Pb) concentrations and stable Pb isotope ratios in the Ulleung Basin, East/Japan Sea, were investigated to identify the Pb...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号