首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
大气科学   1篇
地质学   2篇
海洋学   1篇
自然地理   1篇
  2017年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Despite the gently dipping slopes (ca 1°), large-scale submarine slope failures have occurred on the mid-Norwegian continental margin (Storegga, Sklinnadjupet, Traenadjupet), suggesting the presence of special conditions predisposing to failure in this formerly glaciated margin. With a volume estimated between 2,400 and 3,200 km3 and an affected area of approximately 95,000 km2, the Storegga slide represents one of the largest and best-studied submarine slides of Holocene age known worldwide. Finite element modeling of slope failure indicates that a large (6.5 < Ms < 7.0) seismic triggering mechanism would not be sufficient to cause failure at more than 110 m below the seabed as observed for the slip planes at Storegga (northern sidewall). This implies that other factors (e.g., liquefaction, strain softening, gas charging, rapid burial) are needed to explain the occurrence of the Storegga slide with a deep surface of failure. In this paper, we discuss the importance of the compaction effect of rapidly accumulated sediments in the slide area. During compaction, sediment grains reorganize themselves, thereby, expelling pore water. Consequently, depending on sedimentation rate and permeability, excess pore pressures might result beneath less permeable sediments. Our modeling and cross-checking illustrate how excess pore pressure generation due to high sedimentation rate could explain the development of layers of weakness, and thus, how such a large slide might have been initiated in deep sediments. Using the highest sedimentation rate estimated in the area (36 and 27 m/kyr between 16.2 and 15 kyr BP), 1D modeling shows excess pore pressure values of around 200 kPa at a depth of 100 m below the seafloor 15 kyr BP and 60 kPa at a depth of 100 m at the time of the slide (8 kyr BP). Excess pore pressure apparently drastically reduced the resistance of the sediment (incomplete consolidation). In addition, 2D modeling shows that permeability anisotropies can significantly affect the lateral extent of excess pore pressure dissipation, affecting, that way, normally consolidated sediments far from the excess pore pressure initiation area.  相似文献   
2.
Snakebite envenoming is an important public health problem worldwide and addressing this issue has turned into a challenge for applied science. In this sense, the study of the distributional patterns of problematic snakes is central in terms of public health. Global Climate Change is affecting the distributional ranges of snakes, so that decisions regarding treatment of ophidism (poisoning by snake venom) may also change spatially and/or temporally. Here, we assessed suitable climate spaces at present conditions and estimated potential future changes in the distributions of the five southernmost venomous snakes, responsible for almost 99 % of accidents in Argentina, by implementing an ensemble of forecasts between different algorithms and scenarios for 2030 and 2080. Present suitable climate spaces showed high concordance with known distribution of the species. Future projections show moderate “north to south” displacements of the snakes’ suitable climate spaces, implying potential increments of suitable spaces in human populated areas in Argentina. Our results suggest the necessity of considering ophidism as a dynamic problem. In this regard, the analyses implemented here are useful tools in improving the assessment of snakebite envenoming in light of global climate change.  相似文献   
3.
A series of morphological structures, such as scars and escarpments related to seafloor instabilities, were observed in the Gulf of Cadiz using multibeam bathymetry and acoustic imagery. According to the geometry of the slide scars, the slope angle, the surrounding seafloor morphology and the mechanical parameters of the sediment, we suggest the likely mechanisms initiating the failures for the different types of observed structures. Most of the small-scale sediment failures (≤2 km2) seem directly related to dome-like structures (where slopes are steep) or are located in the vicinity of such structures (fluid flows). It appears that progressive deformation or fluid flow related to the growing of dome-like structures may have weakened the sediments sufficiently to bring 7°-steep slopes to metastable conditions (with a factor of safety close to 1.0). The other instability types are likely related to high-magnitude (Ms?>?6) earthquakes, which are prone to occur in this area (located in the neighbourhood of the 1755 Lisbon earthquake area). Some particular large-scale structures were observed among these seafloor features, for example on the Guadalquivir Bank. On this bank, a series of successive large scars (at least 4 km long), composed of multiple and very regular arcuate segments (1 km in diameter), were observed at different bathymetric levels (every 40 m). These structures might be related to a deep-rooted detachment zone (e.g. successive listric faults) and triggered by high-magnitude earthquakes or by accumulated displacement along a tectonic discontinuity. This would explain such a large-scale deformation, providing a regular escarpment of 40 m high without any sediment flow downslope, thereby suggesting an ongoing (or unfinished) deformation.  相似文献   
4.
In this paper we present an overview of the major triggering mechanisms and preconditions for slope failure on the European continental margins, a vast area in which the dominant factors on sedimentation and erosional processes vary both spatially and temporally. Therefore, we have collated and integrated new as well as published data for both the formerly glaciated and non-glaciated areas of this highly dynamic margin for a time period mainly from the Last Glacial Maximum (LGM) to the present. Mass transport type is predominantly translational sliding on the high-latitude continental margins (north of 52°N), whereas turbidites dominate on lower latitudes. This is partly related to the average slope of the respective continental margin segments and differences in both sediment types and soil properties. Additionally, on low latitudes, submarine slope failures mainly occurred during glacial conditions with low sea level, whereas on high latitudes, they occur during the relatively fast transition from glacial to interglacial conditions (i.e. during periods of sea level rise). The largest submarine slides (e.g. Storegga, Trænadjupet, Andøya) on the glaciated Norwegian margin occurred during the Holocene, a time of rapid ice sheet decay, continental uplift and increased seismic activity, one of the most important triggering mechanisms for large failures during deglaciation processes. Preconditioning factors such as weak layers related to contourite drifts and rapid loading by glacial sediments may enhance strain localization and creep processes on the slope.  相似文献   
5.
Grey brocket deer diet selection was studied during a period of water scarcity in the arid Chaco of Córdoba province, Argentina. Sampling took place during the dry season in and around Chancaní Provincial Reserve (Pocho department). Forty-eight fresh fecal samples were collected from 85 sampling plots located at random. Plant cover and abundance were used to estimate food availability. Diet composition was determined using microscopic analysis of brocket feces and resource selection was calculated using Ivlev’s Selectivity Index. Thirty-three plant species were identified in the diet. Fruits were found in high proportion (12.4%). Woody plants made up 67.7% of the diet; the most consumed species were Castela coccinea (23.1%), Maytenus spinosa (10.2%), Condalia microphylla (9.5%), Schinus fasciculatus (8.5%) and Ximena americana (7.4%). Mazama gouazoubira selects woody and succulent plants, while herbs are consumed according to availability and grasses in a proportion that is below what is available.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号