首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
测绘学   1篇
地球物理   1篇
地质学   1篇
海洋学   2篇
  2021年   1篇
  2017年   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.

Background

Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them.

Results

Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m?2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha?1 for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha?1 for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha?1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha?1] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha?1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha?1.

Conclusions

Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m?2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m?2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m?2.
  相似文献   
2.
The paper suggests an accurate approach to studying carbonate equilibrium in the water of the Razdol’naya River. The approach involves measuring pH by Pitzer’s scale, using a cell without liquid junction; measuring the total alkalinity by Bruevich’s technique; and using apparent constants of carbonate equilibrium with regard for the organic alkalinity. The Pitzer technique was employed to calculate the apparent constants of carbonate equilibrium in solution that models the riverine water: Ca(HCO3)2–NaCl–H2O within the range of alkalinity of 0–0.005 mol/kg and temperatures of 0–25°C. Carbonate equilibrium in the water of the Razdol’naya River was sampled for studying at eight sites during all four seasons. Although the contents of biogenic compounds in the water are high, they can merely insignificantly affect the acid–base equilibrium, which is controlled in the riverine water by carbonate equilibrium and the concentrations of humic substances, which play the greater role, the greater the discharge of the river. In addition to the production and destruction of organic matter, carbonate equilibrium in the river is also affected by the supply of humic substances with soil waters and total alkalinity with groundwaters. The fluxes of alkalinity and humic substances annually brought by the Razdol’naya River to Amur Bay are evaluated at 1.33 × 109 mol and 9.9 × 106 kgC, respectively. The carbon dioxide export with the Razdol’naya River is equal to the alkalinity flux and does not depend on the weathering mechanisms.  相似文献   
3.
Seasonal variations in biogenic substances (nitrates, nitrites, ammonium, phosphates, and silicates), dissolved oxygen, dissolved organic matter, chlorophyll, humus, and suspended matter at seven stations on the Razdol’naya River are examined. Based on seasonal variations, the local sources of river water pollution by biogenic substances were identified. The annual and daily fluxes of biogenic substances through the Razdol’naya River into Amur Bay are calculated. A diffuse pollution source—agricultural fields in river valley—are shown to be the main source of biogenic substance fluxes. The vast hypoxia in the bottom water of Amur Bay, detected by the authors in 2007 and 2008, is supposed to be mostly caused by floods on the Razdol’naya R., which create favorable conditions of water blooming in Amur Bay in summer. The biomass of dead phytoplankton, experiencing microbiological decomposition and oxidation, causes hypoxia of bottom waters in the bay.  相似文献   
4.
In July 2007, integrated studies of the Amur Estuary and the adjacent aquatic areas were performed on board R/V Professor Gagarinskii within the project of the Amur River basin exploration. On the basis of the data obtained during the cruise, the carbonate system of the Amur Estuary in the summer period was considered. It was shown that the distribution of the carbonate parameters in the Amur Estuary and the adjacent aquatic areas points to the high intensity of the bio-geochemical processes of production and mineralization of organic matter. It was found that the organic matter destruction is prevailing over the photosynthesis in the riverine part of the estuary. This aquatic area is a source of carbon dioxide for the atmosphere and rates as a heterotrophic basin. On the contrary, the surface waters at the outer boundaries of the estuary (the Gulf of Sakhalin and the Tatar Strait) act as a sink of the atmospheric carbon dioxide, which is caused by the intense photosynthesis in this area. This part of the estuary is treated as an autotrophic basin.  相似文献   
5.
Oceanology - The results of research carried out on cruise 62 of the R/V Akademik Oparin from December 14 to 29, 2020 continued monitoring of the interannual variability of the Japan Sea water...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号