首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   9篇
  国内免费   8篇
测绘学   2篇
大气科学   10篇
地球物理   66篇
地质学   60篇
海洋学   25篇
天文学   22篇
综合类   3篇
自然地理   20篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   12篇
  2012年   5篇
  2011年   9篇
  2010年   6篇
  2009年   13篇
  2008年   16篇
  2007年   15篇
  2006年   5篇
  2005年   8篇
  2004年   9篇
  2003年   6篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1965年   1篇
  1961年   1篇
  1959年   1篇
  1937年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
1.
Archeological evidence of Pacific salmon in Hokkaido is reviewed and compared with results from western North America. Salmon remains have been found at 24 sites in Hokkaido from the Early Jomon Period to the Ainu Period (6000–100 years ago). Fish remains at three archeological sites in the Kushiro River basin indicated that Pacific salmon (Oncorhynchus spp.) were distributed and utilized from 6000 years ago. The present Kushiro Wetland was formerly covered with seawater and called the Paleo Kushiro Bay 5000–6000 years ago. Based on the molluscan fossil fauna, seawater temperature at Paleo Kushiro Bay was about 5°C warmer than at present. Warmer conditions for salmon in Kushiro 5000–6000 years ago corresponded with the poor conditions for salmon in the Columbia River basin 6000–7000 years ago. If the future global warming is similar to the conditions that prevailed 5000–6000 years ago, the southern limit of salmon distribution will shift northwards and the salmon production will decrease. However, they will not disappear from either Hokkaido or southwestern North America.  相似文献   
2.
Slurry pipe jacking was firmly established as a special method for the non-disruptive construction of the underground pipelines of sewage systems. Pipe jacking, in its traditional form, has occasionally been used for short railways, roads, rivers, and other projects. Basically the system involves the pushing or thrusting of concrete pipes into the ground by a number of jacks. In slurry pipe jacking, during the pushing process, mud slurry and lubricant are injected into the face and the over cutting area that is between the concrete pipes and the surrounding soil. Next, the slurry fills voids and the soil stabilizes due to the created slurry cake around the pipes. Fillings also reduce the jacking force or thrust during operation. When the drivage and pushing processes are finished, a mortar injection into the over cutting area is carried out in order to maintain permanent stability of the surrounding soil and the over cutting area. Successful lubrication around the pipes is extremely important in a large diameter slurry pipe jacking operation. Control of lubrication and gaps between pipes and soil can prevent hazards such as surface settlement and increases in thrust. Also, to find voids around the pipes after the jacking process, in order to inject mortar for permanent stabilizing, an investigation around the pipes is necessary. To meet these aims, this paper is concerned with the utilization of known methods such as the GPR (Ground Penetrating Radar) system and borehole camera to maintain control of the over cutting area and lubricant distribution around the pipes during a site investigation. From this point of view, experiments were carried out during a tunnel construction using one of the largest cases of slurry pipe jacking in Fujisawa city, Japan. The advantages and disadvantages of each system were clarified during the tests.  相似文献   
3.
An experiment on evapotranspiration from citrus trees under irrigation with saline waterwas carried out for 4 months. Two lysimeters planted with a citrus tree in the green house wereused. One lysimeter was irrigated with saline water (NaCl and CaCl2 of 2000 mg/L equivalence,EC = 3.8 dS/m, SAR = 5.9) and the other was irrigated with freshwater using drip irrigation. Theapplied irrigation water was 1.2 times that of the evapotranspiration on the previous day.Evapotranspiration was calculated as the change in lysimeter weight recorded every 30 minutes.The lysimeters were filled with soil with 95.8% sand. The results of the experiment were as follows.(i) The evapotranspiration from citrus tree was reduced after irrigation with saline water. Theevapotranspiration returns to normal after leaching. However it takes months to exhaust the saltfrom the tree. ( ii ) To estimate the impact of irrigation with saline water on the evapotranspirationfrom citrus trees, the reduction coefficient due to salt stress (Ks) was used in this experiment.Evapotranspiration under irrigation with saline water (ETs) can be calculated from evapotranspira-tion under irrigation with freshwater (ET) by the equation ETs = Ks× ET. Ks can be expressed as afunction of ECsw. (iii) The critical soil-water electrical conductivity (ECsw) is 9.5 dS/m, beyondwhich adverse effects on evapotranspiration begin to appear. If ECsw can be controlled at below9.5 dS/m, saline water can be safely used for irrigation.  相似文献   
4.
Fracturing and frictional sliding of quartz and granite under dry condition generates fractoluminescence, charged particle emission and electromagnetic radiation. Various kinds of experiments indicate that surface charge density on fracture or frictional slip surface of quartz and granite is 10−4 to 10−2 C/m2 which is larger than bound charges induced by the disappearance of piezoelectricity due to the release of stress. Hole and electron trapping centers, which is found in semiconductor devices with the Si–SiO2 system, are causes of surface charging on fracture or frictional slip surface of quartz crystal. The quantity of the surface charge is enough to cause corona discharge that can generate earthquake lights. The mechanism considering the hole and electron trapping centers has a probability to explain why non-piezoelectric minerals or rocks generate electromagnetic phenomena. It can be one of origins of seismo-electromagnetic phenomena (SEP).  相似文献   
5.
Abstract. Municipal solid waste combustion leads to concentration of various metals in the solid residue (fly ash) remaining after combustion. These metals pose serious environmental hazard and require proper handling and monitoring in order to control their harmful effects. Leachability of some metals from fly ash was examined in fly ash and Milli-Q water mixture (liquid-to-solid ratio, 100) under various temperature and pH conditions in the laboratory. The leaching experiments conducted for 24 hours showed that pH was generally more important than temperature in controlling the amount of metals leached out of the fly ash. However, at a given pH, rise in temperature led to different degree of (usually one to two fold) enhanced or reduced leaching of metals. Owing to amphoteric nature of oxides of Al, Cr, Pb and Zn, these metals often yielded typical pattern of increase and decrease in their concentrations with change in pH. The extent of leaching of Cr and Pb in our experiments suggests that decrease of pH to acidic range in the case of Pb and to neutral to acidic range for Cr over a long period of storage of fly ash at solid waste dumping site may facilitate leaching of these metals from fly ash, leading to contamination of groundwater to the level that exceeds beyond the level permitted by the environmental laws.  相似文献   
6.
Seismic tomography studies in the northeastern Japan arc have revealed the existence of an inclined sheet-like seismic low-velocity and high-attenuation zone in the mantle wedge at depths shallower than about 150 km. This sheet-like low-velocity, high-attenuation zone is oriented sub-parallel to the subducted slab, and is considered to correspond to the upwelling flow portion of the subduction-induced convection. The low-velocity, high-attenuation zone reaches the Moho immediately beneath the volcanic front (or the Ou Backbone Range) running through the middle of the arc nearly parallel to the trench axis, which suggests that the volcanic front is formed by this hot upwelling flow. Aqueous fluids supplied by the subducted slab are probably transported upward through this upwelling flow to reach shallow levels beneath the Backbone Range where they are expelled from solidified magma and migrate further upward. The existence of aqueous fluids may weaken the surrounding crustal rocks, resulting in local contractive deformation and uplift along the Backbone Range under the compressional stress field of the volcanic arc. A strain-rate distribution map generated from GPS data reveals a notable concentration of east–west contraction along the Backbone Range, consistent with this interpretation. Shallow inland earthquakes are also concentrated in the upper crust of this locally large contraction deformation zone. Based on these observations, a simple model is proposed to explain the deformation pattern of the crust and the characteristic shallow seismic activity beneath the northeastern Japan arc.  相似文献   
7.
8.
9.
10.
Two types of biotite isograd are defined in the low-grade metamorphism of the Wazuka area, a Ryoke metamorphic terrain in the Kii Peninsula, Japan. The first, BI1, is defined by the reaction of chlorite+K-feldspar= biotite+muscovite+quartz+H2O that took place in psammitic rocks, and the second, BI2, by the continuous reaction between muscovite, chlorite, biotite and quartz in pelitic rocks. The Fe/Mg ratios of the host rocks do not significantly affect the reactions. From the paragenesis of pelitic and psammitic metamorphic rocks, the following mineral zones were established for this low-pressure regional metamorphic terrain: chlorite, transitional, chlorite-biotite, biotite, and sillimanite. The celadonite content of muscovite solid solution in pelitic rocks decreases systematically with the grade of metamorphism from 38% in the chlorite zone to 11% in the biotite zone. Low pressure does not prohibit muscovite from showing the progressive change of composition, if only rocks with appropriate paragenesis are chosen. A qualitative phase diagram of the AKF system relevant to biotite formation suggests that the higher the pressure of metamorphism, the higher the celadonite content of muscovite at BI1, which is confirmed by comparing the muscovites from the Barrovian and Ryoke metamorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号