首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   2篇
地球物理   27篇
地质学   13篇
海洋学   27篇
天文学   13篇
自然地理   5篇
  2023年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   6篇
  2009年   7篇
  2008年   9篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
1.
2.
Effects of inertial and kinematic forces on pile stresses are studied based on large shaking table tests on pile-structure models with a foundation embedded in dry and liquefiable sand deposits. The test results show that, if the natural period of the superstructure, Tb, is less than that of the ground, Tg, the ground displacement tends to be in phase with the inertial force from the superstructure, increasing the shear force transmitted to the pile. In contrast, if Tb is greater than Tg, the ground displacement tends to be out of phase with the inertial force, restraining the pile stress from increasing. With the effects of earth pressures on the embedded foundation and pile incorporated in, pseudo-static analysis is conducted to estimate maximum moment distribution in pile. It is assumed that the maximum moment is equal to the sum of the two stresses caused by the inertial and kinematic effects if Tb<Tg or the square root of the sum of the squares of the two if Tb>Tg. The estimated pile stresses are in good agreement with the observed ones regardless of the occurrence of soil liquefaction.  相似文献   
3.
Temporal changes in nitrogen isotopic composition (δ15N) of the NO3 pool in the water column below the pycnocline in Ise Bay, Japan were investigated to evaluate the effect of nitrification on the change in the δ15N in the water column. The δ15N of NO3 in the lower layers varied from −8.5‰ in May to +8.4‰ in July in response to the development of seasonal hypoxia and conversion from NH4 + to NO3 . The significantly 15N-depleted NO3 in May most likely arose from nitrification in the water column. The calculated apparent isotopic discrimination for water column nitrification (ɛnit = δ15Nsubstrate − δ15Nproduct) was 24.5‰, which lies within the range of previous laboratory-based estimates. Though prominent deficits of NO3 from hypoxic bottom waters due to denitrification were revealed in July, the isotopic discrimination of denitrification in the sediments was low (ɛdenit = ∼1‰). δ15NNO3 in the hypoxic lower layer mainly reflects the isotopic effect of water column nitrification, given that water column nitrification is not directly linked with sedimentary denitrification and the effect of sedimentary denitrification on the change in δ15NNO3 is relatively small.  相似文献   
4.
We performed two-dimensional spectroscopic observations of the preceding sunspot of NOAA 10905 located off disk center (S8 E36, μ≈0.81) by using the Interferometric BI-dimensional Spectrometer (IBIS) operated at the Dunn Solar Telescope (DST) of the National Solar Observatory, New Mexico. The magnetically insensitive Fe I line at 709.04 nm was scanned in wavelength repetitively at an interval of 37 s to calculate sequences of maps of the line-wing and line-core intensity, and the line-of-sight Doppler velocity at different line depths (3% to 80%). Visual inspection of movies based on speckle reconstructions computed from simultaneous broadband data and the local continuum intensity at 709.04 nm revealed an umbral dot (UD) intruding rapidly from the umbral boundary to the center of the umbra. The apparent motion of this object was particularly fast (1.3 km s−1) when compared to typical UDs. The lifetime and size of the UD was 8.7 min and 240 km, respectively. The rapid UD was visible even in the line-core intensity map of Fe I 709.04 nm and was accompanied by a persistent blueshift of about 0.06 km s−1.  相似文献   
5.
In this study we used two stable isotopes, δ13C and δ18O, for water mass classification in the coastal region off eastern Hokkaido. δ13C* values, which were corrected for the biological effect, and δ 18O values up to 300 m depth suggested that the isotopic character of the onshore and offshore water in the southern Okhotsk Sea, the Nemuro Strait and the western North Pacific could be explained by the mixing of three source waters: the Oyashio water (OYW), Soya Warm Current water (SWCW) and East Sakhalin Current water (ESCW). In summer, δ 13C*-δ 18O plots indicated mixing between SWCW from the southern Okhotsk Sea and OYW in the Pacific coast of southeastern Hokkaido, while temperature-salinity plots of the onshore water showed minimal difference from the offshore OYW. In winter, on the other hand, the mixed water of ESCW and OYW (or SWCW) appeared in the Pacific coastal region, distributed as cold, low salinity onshore water. Finally, we estimated mixing ratios of OYW, SWCW and ESCW in the coastal region of western North Pacific using their mean values of δ 13C* and δ 18O as endmembers. These results suggest seasonal and yearly changes of water mass combination en route from the southern Okhotsk Sea to the western North Pacific.  相似文献   
6.
The search for radio spectral lines from Comet Sugano-Saigusa-Fujikawa (1983e) was conducted using the 45-m telescope of Nobeyama Radio Observatory. The frequency ranges of 44.0–46.0 and 47.5–49.5 GHz were surveyed down to ΔTA1 (rms) = 20–30 mK, with a beam size of ~35 arc sec. Upper limits have been established for spectral lines of atomic hydrogen, CS, OCS, SO2, H2CO, CH3OH, HCCCCCN, HCOOCH3, CH3OCH3, and CH3CH2CN. The J = 5?4 line from HCCCN in the vibrational ground state possibly has been detected but not confirmed. The suggested total amount of HCCCN in the coma is consistent with the possible picture that HCCCN is the main parent molecule of CN.  相似文献   
7.
We investigate the dynamical response, in terms of disc size and rotation velocity, to mass loss by supernovae in the evolution of spiral galaxies. A thin baryonic disc having the Kuzmin density profile embedded in a spherical dark matter halo having a density profile proposed by Navarro, Frenk & White is considered. For the purpose of comparison, we also consider the homogeneous and   r −1  profiles for dark matter in a truncated spherical halo. Assuming for simplicity that the dark matter distribution is not affected by mass-loss from discs and the change of baryonic disc matter distribution is homologous, we evaluate the effects of dynamical response in the resulting discs. We found that the dynamical response only for an adiabatic approximation of mass-loss can simultaneously account for the rotation velocity and disc size as observed particularly in dwarf spiral galaxies, thus reproducing the Tully–Fisher relation and the size versus magnitude relation over the full range of magnitude. Furthermore, we found that the mean specific angular momentum in discs after the mass-loss becomes larger than that before the mass-loss, suggesting that the mass-loss would most likely occur from the central disc region where the specific angular momentum is low.  相似文献   
8.
In order to examine the applicability of remotely-sensed ocean color for the estimation of phytoplankton biomass and primary production in the Oyashio region, the western subarctic Pacific, vertical distributions of chlorophylla concentration and primary production were observed in April and May 1997. Spring bloom was observed in both April and May, and the surface concentration of chlorophylla exceeded 40 mg m−3. The relationship between the standing stocks of chlorophylla within the layer from the sea surface to one optical depth (0–1/k layer) and the surface chlorophylla concentration is expressed as a Michaelis-Menten equation. The mean ratio of the standing stock of chlorophylla in the euphotic layer to that in the 0–1/k layer was 4.41, this ratio did not significantly differ from 4.61 which was obtained at homogeneous distribution of chlorophylla within the euphotic layer. These facts suggest that the distribution of chlorophylla could be assumed to be homogeneous in the euphotic layer during the spring bloom. Results of primary production measurements by simulatedin situ method were compared with those by an algorithm with two variables; chlorphylla and non-spectral PAR. Daily primary production in the euphotic layer estimated by the algorithm varied in a range of 38–274% of that estimated by incubation, although the primary productions by the algorithm agreed with those by the incubation at a half of stations. Primary production within the euphotic layer calculated using simply the surface data was the same as that estimated using vertical distribution of chlorophylla. These results show that the primary production in the euphotic layer may be estimated from the remote sensed measurements during the spring bloom in the Oyashio region.  相似文献   
9.
A rapid reduction in sediment porosity from 60 to 70 % at seafloor to less than 10 % at several kilometers depth can play an important role in deformation and seismicity in the shallow portion of subduction zones. We conducted deformation experiments on rocks from an ancient accretionary complex, the Shimanto Belt, across the Nobeoka Thrust to understand the deformation behaviors of rocks along plate boundary faults at seismogenic depth. Our experimental results for phyllites in the hanging wall and shale‐tuff mélanges in the footwall of the Nobeoka Thrust indicate that the Shimanto Belt rocks fail brittlely accompanied by a stress drop at effective pressures < 80 MPa, whereas they exhibit strain hardening at higher effective pressures. The transition from brittle to ductile behavior in the shale–tuff mélanges lies on the same trend in effective stress–porosity space as that for clay‐rich and tuffaceous sediments subducting into the modern Nankai subduction zone. Both the absolute yield strength and the effective pressure at the brittle–ductile transition for the phyllosilicate‐rich materials are much lower than for sandstones. These results suggest that as the clay‐rich or tuffaceous sediments subduct and their porosities are reduced, their deformation behavior gradually transitions from ductile to brittle and their yield strength increases. Our results also suggest that samples of the ancient Shimanto accretionary prism can serve as an analog for underthrust rocks at seismogenic depth in the modern Nankai Trough.  相似文献   
10.
Although much is known about overall sediment delivery ratios for catchments as components of sediment production and sediment yield, little is known about the component of temporary sediment storage. Sediment delivery ratios focused on the influence of storm-related sediment storage are measured at Matakonekone and Oil Springs tributaries of the Waipaoa River basin, east coast of New Zealand. The terrace deposits of both tributaries show abundant evidence of storm-related sedimentation, especially sediment delivered from Cyclone Bola, a 50 year return rainfall event which occurred in 1988. The sediment delivery ratio is calculated by dividing the volume of sediment transported from a tributary to the main stream by the volume of sediment generated at erosion sites in the tributary catchment. Because the sediment delivery volume is unknown, it can be calculated as the difference between sediment generation volume and sediment storage volume in the channel reach of the tributary. The volume of sediment generated from erosion sites in each tributary catchment was calculated from measurements made on aerial photographs dating from 1960 (1:44 000) and 1988 (1:27 000). The volume of sediment stored in the tributary can be calculated from measurements of cross-sections located along the tributary channel, which are accompanied by terrace deposits dated by counting annual growth rings of trees on terrace surfaces. Sediment delivery ratios are 0·93 for both Matakonekone catchment and Oil Springs catchment. Results indicate that Oil Springs catchment has contributed more than twice the volume of sediment to the Waipaoa River than the Matakonekone catchment (2·75 × 106 m3 vs 1·22 × 106 m3). Although large volumes of sediment are initially deposited during floods, subsequent smaller flows scour away much of these deposits. The sediment scouring rate from storage is 1·25 × 104 m3 a−1 for Matakonekone stream and 0·83 × 104 m3 a−1 for Oil Springs stream. Matakonekone and Oil Springs channels respond to extreme storms by instantaneously aggrading, then gradually excavating the temporarily stored sediment. Results from Matakonekone and Oil Springs streams suggest a mechanism by which event recurrence interval can strongly influence the magnitude of a geomorphic change. Matakonekone stream with its higher stream power is expected to excavate sediment deposits more rapidly and allow more rapid re-establishment of storage capacity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号