首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   4篇
海洋学   1篇
天文学   1篇
  2022年   1篇
  2018年   1篇
  2014年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有8条查询结果,搜索用时 765 毫秒
1
1.
On October 25, 2010, a large earthquake occurred off the coast of the Mentawai islands in Indonesia, generating a tsunami that caused damage to the coastal area of North Pagai, South Pagai, and Sipora islands. Field surveys were conducted soon after the event by several international survey teams, including the authors’. These surveys clarified the tsunami height distribution, the damage that took place, and residents’ awareness of tsunamis in the affected islands. Heights of over 5 m were recorded on the coastal area of the Indian Ocean side of North and South Pagai islands and the south part of Sipora island. In some villages, it was difficult to evacuate immediately after the earthquake because of the lack of routes to higher ground or the presence of rivers. Residents in some villages had taken part in tsunami drills or education; however, not all villages shared awareness of tsunami threats. In the present paper, based on the results of these field surveys, the vulnerability of these islands with regards to future tsunami threats was analyzed. Three important aspects of this tsunami disaster, namely the geographic disadvantage of the islands, the resilience of buildings and other infrastructure, and people’s awareness of tsunamis, are discussed in detail, and corresponding tsunami mitigation strategies are explained.  相似文献   
2.
Conservation organizations often invest considerable resources in education and outreach activities in and around marine protected areas (MPAs). The expectation is that such efforts will change local knowledge, attitudes and ultimately behavior. This is one of the first studies to assess the efficacy of using education and outreach activities to improve community knowledge and attitudes about an MPA. Random sample surveys in 2005 and 2010 (n=1213) before and after education and outreach activities are compared. Program budgets for the same period give the investment levels. With an investment level averaging US$24 per capita/year, the result was an average increase of 33% in “yes” responses across 15 indicators of knowledge and attitudes towards marine conservation. The increase in knowledge and positive attitudes was associated with a large decrease in “not sure” responses, suggesting that community members with fewer initial preconceptions are the most effective target for education and outreach activities. This study demonstrates that investments in MPA education and outreach can generate increases in local knowledge and positive attitudes, and changing knowledge and attitudes is expected to contribute to the long-term compliance with MPA regulations.  相似文献   
3.
We report the first measurements of radio frequency spectrum occupancy performed at sites aimed to host the future radio astronomy observatory in Indonesia. The survey is intended to obtain the radio frequency interference (RFI) environment in a spectral range from low frequency 10 MHz up to 8 GHz. The measurements permit the identification of the spectral occupancy over those selected sites in reference to the allocated radio spectrum in Indonesia. The sites are in close proximity to Australia, the future host of Square Kilometre Array (SKA) at low frequency. Therefore, the survey was deliberately made to approximately adhere the SKA protocol for RFI measurements, but with lower sensitivity. The RFI environment at Bosscha Observatory in Lembang was also measured for comparison. Within the sensitivity limit of the measurement equipment, it is found that a location called Fatumonas in the surrounding of Mount Timau in West Timor has very low level of RFI, with a total spectrum occupancy in this measured frequency range being about 1 %, mostly found at low frequency below 20 MHz. More detailed measurements as well as a strategy for a radio quiet zone must be implemented in the near future.  相似文献   
4.
Summary A study of the skill of the ECHAM version 4 atmospheric general circulation model and two reanalyses in simulating Indonesian rainfall is presented with comparisons to 30 years of rain gauge data. The reanalyses are those performed by the European Centre for Medium-Range Weather Forecasts and of the National Centers for Environmental Prediction jointly with National Center for Atmospheric Research. This study investigates the skill of the reanalyses and ECHAM4 with regard to three climate regions of Indonesia, the annual and interannual variability of rainfall and its responses to El Ni?o-Southern Oscillation (ENSO) events. The study is conducted at two spectral resolutions, T42 and T106. The skill of rainfall simulations in Indonesia depends on the region, month and season, and the distribution of land and sea. Higher simulation skills are confined to years with ENSO events. With the exception of the northwest region of Indonesia, the rainfall from June (Molucca) and July (south Indonesia) to November is influenced by ENSO, and is more sensitive to El Ni?o than La Ni?a events. Observations show that the Moluccan region is more sensitive to ENSO, receives a longer ENSO impact and receives the earliest ENSO impact in June, which continues through to December. It is found that the reanalyses and the climate model simulate seasonal variability better than monthly variability. The seasonal skill is highest in June/July/August, followed by September/October/November, December/January/February and March/April/May. The correlations usually break down in April (for monthly analysis) or in the boreal spring (for seasonal analysis). This period seems to act as a persistent barrier to Indonesian rainfall predictability and skill. In general, the performance of ECHAM4 is poor, but in ENSO sensitive regions and during ENSO events, it is comparable to the reanalyses.  相似文献   
5.
The tsunami event generated by the great Sumatra–Andaman earthquake on 26 December 2004 was simulated with the recently developed model TsunAWI. The model is based on the finite element method, which allows for a very flexible discretization of the model domain. This is demonstrated by a triangulation of the whole Indian Ocean with a resolution of about 14 km in the deep ocean but a considerably higher resolution of about 500 m in the coastal area. A special focus is put on the Banda Aceh region in the Northern tip of Sumatra. This area was heavily hit by the tsunami and the highest resolution in this area is about 40 m in order to include inundation processes in the model simulation. We compare model results to tide gauge data from all around the Indian Ocean, to satellite altimetry, and field measurements of flow depth in selected locations of the Aceh region. Furthermore, we compare the model results of TsunAWI to the results of a nested grid model (TUNAMI-N3) with the same initial conditions and identical bathymetry and topography in the Aceh region. It turns out that TsunAWI gives accurate estimates of arrival times in distant locations and in the same mesh gives good inundation results when compared to field measurements and nested grid results.  相似文献   
6.
The distribution of aromatic hydrocarbons and stable carbon isotope ratios of organic matter in a series of nine Miocene Embalut coal samples obtained from nine coal seams of Kutai Basin, East Kalimantan, Indonesia were studied. The rank of the Embalut coals ranged from lignites to low rank sub-bituminous coals (0.36–0.50% Rr), based on measurements of huminite reflectance. The aromatic hydrocarbon fractions of all coal samples were dominated by cadalene in the lower boiling point range and picene derivatives in the higher boiling point range of the gas chromatograms. Cadalene can be attributed to the contribution of Dipterocarpaceae and various hydrated picenes to the contribution of additional angiosperms to the coal forming vegetation. The picenes originate from alpha- and beta-amyrin. However, in some coal samples minor amounts of simonellite and retene were also detected which argues for an additional contribution of gymnosperms (conifers) to coal forming vegetation preferentially in the Middle Miocene and at the beginning of the Late Miocene. The results of stable carbon isotope ratios (δ13C) in most of the coal samples are consistent with their origin from angiosperms (δ13C between ?27.0‰ and ?28.0‰). During the Miocene the climate of Mahakam Delta was not uniformly moist and cooler than the present day climate. This would have been favourable for the growth of conifers, especially in the montane forests. The contribution of conifers to the Embalut coals might be a result of the cool Middle/Late Miocene climate during peat accumulation in the Kutai Basin.  相似文献   
7.
High rainfall in equatorial regions leads to high groundwater levels or pore pressures and a high risk of landslides on the slopes of open pit mines, hindering mining operations. To lower the groundwater level surrounding a slope, a drainage system is needed. A drain hole is a part of a drainage system which utilises gravity to drain groundwater. Drain hole installation in fractured media requires the determination of the number, location, length and other parameters of the drain holes. Drain holes are frequently installed in uniform configurations or in layouts with uniform spacing, which are often ineffective and uneconomical, as some holes are not in the right positions or directions within the fractured media. This paper attempts to develop a conceptual model of an optimised configuration of drain holes by setting the drain hole parameters, or decision variables, such as number, location and length, in such a way that it produces the most effective and efficient outcome by maximising groundwater lowering and minimising cost. The optimisation is supported by the multi-stage genetic algorithm method in combination with a groundwater simulator, hereafter called the multi-stage GWSim-GA SO method. The procedure of the conceptual model will be further developed and used as a framework in the groundwater management of fractured media of an open pit mine slope.  相似文献   
8.

Soil liquefaction on 28 September 2018 in Palu, Indonesia, included one of the largest soil movements ever, where objects on the ground surface moved hundreds of meters away and settlements sank into the mud. Some preliminary studies show that in addition to a strong earthquake, there are strong indications that a confined aquifer in the Palu valley worsened the liquefaction. The role of the confined aquifer can be recognized early on from one of various signs, namely the presence of massive surface inundations suspected due to groundwater expulsion which is thought to originate mostly from the confined aquifer. This paper describes the mechanism of the soil liquefaction in Palu from the perspective of earthquake hydrogeology, focusing on the groundwater expelled from an unconfined aquifer and especially from the underlying confined aquifer through hydraulic inter-connection between the two, which is possible due to simultaneous interaction of excess pore pressure dissipation and enhanced permeability driven by an earthquake in the near field. If this hypothesis proves to be strong, there are implications for engineering practices because the evaluation of potential soil liquefaction carried out currently in the geotechnical engineering field generally only involves the role of shallow groundwater and/or the unconfined aquifer and the role of soil layers not deeper than 30 m from the ground surface. It may be necessary to complement current evaluation practice with an evaluation of the deep groundwater response to earthquakes, especially if the deep groundwater is artesian and productive, with a relatively thin confining layer.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号