首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
地球物理   3篇
海洋学   2篇
天文学   1篇
自然地理   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2004年   1篇
  2003年   2篇
  1984年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
A preliminary optical classification of lakes in Estonia and south Finland which can also be used for small bays of the Baltic Sea is elaborated. The classification is based on the optical properties of water (diffuse attenuation coefficient, diffuse reflectance) and parameters that are routinely monitored in water bodies (Secchi depth, concentration of chlorophyll-a, total suspended matter and yellow substance). The data complex used for our classification covers different types of water ecosystems (ranging from oligotrophic to hypertrophic) and the variability of water constituent concentrations in the ice-free period in Estonia and south Finland. Using cluster analysis, we found 5 optical classes of waters: clear (C), moderate (M), turbid (T), very turbid (V) and brown (B). There is satisfactory correspondence between class of water, shape of diffuse attenuation coefficient and diffuse reflectance spectra and trophic state of the lakes.  相似文献   
2.
3.
Subglacial lakes and jökulhlaups in Iceland   总被引:1,自引:0,他引:1  
Active volcanoes and hydrothermal systems underlie ice caps in Iceland. Glacier–volcano interactions produce meltwater that either drains toward the glacier margin or accumulates in subglacial lakes. Accumulated meltwater drains periodically in jökulhlaups from the subglacial lakes and occasionally during volcanic eruptions. The release of meltwater from glacial lakes can take place in two different mechanisms. Drainage can begin at pressures lower than the ice overburden in conduits that expand slowly due to melting of the ice walls by frictional and sensible heat in the water. Alternatively, the lake level rises until the ice dam is lifted and water pressure in excess of the ice overburden opens the waterways; the glacier is lifted along the flowpath to make space for the water. In this case, discharge rises faster than can be accommodated by melting of the conduits. Normally jökulhlaups do not lead to glacier surges but eruptions in ice-capped stratovolcanoes have caused rapid and extensive glacier sliding. Jökulhlaups from subglacial lakes may transport on the order of 107 tons of sediment per event but during violent volcanic eruptions, the sediment load has been 108 tons.  相似文献   
4.
5.
6.
The 13-day-long Gjálp eruption within the Vatnajökull ice cap in October 1996 provided important data on ice–volcano interaction in a thick temperate glacier. The eruption produced 0.8 km3 of mainly volcanic glass with a basaltic icelandite composition (equivalent to 0.45 km3 of magma). Ice thickness above the 6-km-long volcanic fissure was initially 550–750 m. The eruption was mainly subglacial forming a 150–500 m high ridge; only 2–4% of the volcanic material was erupted subaerially. Monitoring of the formation of ice cauldrons above the vents provided data on ice melting, heat flux and indirectly on eruption rate. The heat flux was 5–6×105 W m-2 in the first 4 days. This high heat flux can only be explained by fragmentation of magma into volcanic glass. The pattern of ice melting during and after the eruption indicates that the efficiency of instantaneous heat exchange between magma and ice at the eruption site was 50–60%. If this is characteristic for magma fragmentation in subglacial eruptions, volcanic material and meltwater will in most cases take up more space than the ice melted in the eruption. Water accumulation would therefore cause buildup of basal water pressure and lead to rapid release of the meltwater. Continuous drainage of meltwater is therefore the most likely scenario in subglacial eruptions under temperate glaciers. Deformation and fracturing of ice played a significant role in the eruption and modified the subglacial water pressure. It is found that water pressure at a vent under a subsiding cauldron is substantially less than it would be during static loading by the overlying ice, since the load is partly compensated for by shear forces in the rapidly deforming ice. In addition to intensive crevassing due to subsidence at Gjálp, a long and straight crevasse formed over the southernmost part of the volcanic fissure on the first day of the eruption. It is suggested that the feeder dyke may have overshot the bedrock–ice interface, caused high deformation rates and fractured the ice up to the surface. The crevasse later modified the flow of meltwater, explaining surface flow of water past the highest part of the edifice. The dominance of magma fragmentation in the Gjálp eruption suggests that initial ice thickness greater than 600–700 m is required if effusive eruption of pillow lava is to be the main style of activity, at least in similar eruptions of high initial magma discharge.Editorial responsibility: J. Donnelly-Nolan  相似文献   
7.
In de‐glaciated areas, para‐glaciation (i.e. the conditioning of landscapes by prior glaciation) has often been considered a major predisposing factor in landslide occurrence; its consequences have been particularly well identified at a fine scale (especially on bedrock jointing). Hitherto, the relative impacts of para‐glaciation on hillslope dynamics at a regional scale had nevertheless not been quantified statistically. We examine Skagafjörður area (northern Iceland) where landslides are widespread (at least 108 were mapped in an area of c. 3000 km2). We compare the role of para‐glaciation (debuttressing, influence of post‐glacial rebound) with that of classic factors (topography, lithology, etc.) in landslide occurrence and location, using a spatial analysis based on a chi‐square test. On the one hand, the results highlight that landslides are over‐represented in areas where post‐glacial rebound was at its maximum, with a stronger concentration of landslides in the northern part of the fjord. On the other hand, the distribution of landslides did not show any clear relationship with the pattern of glacial debuttressing. Tschuprow coefficient highlights that the influence of post‐glacial rebound on landslide location is higher than the combined influence of slope gradient, curvature or geological structure. This result is supported by our initial evidence for the timing of landslides in the area: most landslides occurred during the first half of the Holocene, and a period of hillslope instability was initiated when the post‐glacial uplift was at its maximum. Finally, the mechanisms that link post‐glacial rebound and landsliding as well as the geomorphic impacts of landslides, are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号