首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
  国内免费   1篇
大气科学   2篇
地球物理   8篇
地质学   31篇
海洋学   2篇
天文学   10篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1997年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
1.
The Lufilian foreland is a triangular-shaped area located in the SE of the Democratic Republic of Congo and to the NE of the Lufilian arc, which hosts the well-known Central African Copperbelt. The Lufilian foreland recently became an interesting area with several vein-type (e.g., Dikulushi) and stratiform (e.g., Lufukwe and Mwitapile) copper occurrences. The Lufilian foreland stratiform Cu mineralization is, to date, observed in sandstone rock units belonging to the Nguba and Kundelungu Groups (Katanga Supergroup).The Mwitapile sandstone-hosted stratiform Cu prospect is located in the north eastern part of the Lufilian foreland. The host rock for the Cu mineralization is the Sonta Sandstone of the Ngule Subgroup (Kundelungu Group). A combined remote sensing, petrographic and fluid inclusion microthermometric analysis was performed at Mwitapile and compared with similar analysis previously carried out at Lufukwe to present a metallogenic model for the Mwitapile- and Lufukwe-type stratiform copper deposits. Interpretation of ETM+ satellite images for the Mwitapile prospect and the surrounding areas indicate the absence of NE–SW or ENE–WSW faults, similar to those observed controlling the mineralization at Lufukwe. Faults with these orientations are, however, present to the NW, W, SW and E of the Mwitapile prospect. At Mwitapile, the Sonta Sandstone host rock is intensely compacted, arkosic to calcareous with high silica cementation (first generation of authigenic quartz overgrowths). In the Sonta Sandstone, feldspar and calcite are present in disseminated, banded and nodular forms. Intense dissolution of these minerals caused the presence of disseminated rectangular, pipe-like and nodular dissolution cavities. Sulfide mineralization is mainly concentrated in these cavities. The hypogene sulfide minerals consist of two generations of pyrite, chalcopyrite, bornite and chalcocite, separated by a second generation of authigenic quartz overgrowth. The hypogene sulfide minerals are replaced by supergene digenite and covellite. Fluid inclusion microthermometry on the first authigenic quartz phase indicates silica precipitation from an H2O–NaCl–CaCl2 fluid with a minimum temperature between 111 and 182 °C and a salinity between 22.0 and 25.5 wt.% CaCl2 equiv. Microthermometry on the second authigenic quartz overgrowths and in secondary trails related to the mineralization indicate that the mineralizing fluid is characterized by variable temperatures (Th = 120 to 280 °C) and salinities (2.4 to 19.8 wt.% NaCl equiv.) and by a general trend of increasing temperatures with increasing salinities.Comparison between Mwitapile and Lufukwe indicates that the stratiform Cu mineralization in the two deposits is controlled by similar sedimentary, diagenetic and structural factors and likely formed from a similar mineralizing fluid. A post-orogenic timing is proposed for the mineralization in both deposits. The main mineralization controlling factors are grain size, clay and pyrobitumen content, the amount and degree of feldspar and/or calcite dissolution and the presence of NE–SW to ENE–WSW faults. The data support a post-orogenic fluid-mixing model for the Mwitapile- and Lufukwe-type sandstone-hosted stratiform Cu deposits, in which the mineralization is related to the mixing between a Cu-rich hydrothermal fluid, with a temperature up to 280 °C and a maximum salinity of 19.8 wt.% NaCl equiv., with a colder low salinity reducing fluid present in the sandstone host rock. The mineralizing fluid likely migrated upwards to the sandstone source rocks along NE–SW to ENE–WSW orientated faults. At Lufukwe, the highest copper grades at surface outcrops and boreholes were found along and near to these faults. At Mwitapile, where such faults are 2 to 3 km away, the Cu grades are much lower than at Lufukwe. Copper precipitation was possibly promoted by reduction from pre-existing hydrocarbons and non-copper sulfides and by the decrease in fluid salinity and temperature during mixing. Based on this research, new Cu prospects were proposed at Lufukwe and Mwitapile and a set of recommendations for further Cu exploration in the Lufilian foreland is presented.  相似文献   
2.
3.
The present work deals with spectrophotometric studies of two Be stars ( Leo and 17 Tau) using 74 telescope at Kottamia observatory.The results obtained revealed the presence of variations in the general shape and the equivalent width of the profiles of hydrogen lines in the spectrum of both stars within short period interval.  相似文献   
4.
The study area is located in the central part of the Eastern Desert of Egypt and is mainly covered by different varieties of Precambrian basement rocks represented mainly by younger and older granites, metadiorite, metavolcanics, and metasediments. The analysis and interpretation of airborne gamma-ray spectrometric survey data are essentially based on the computation of the three radioelements (U, Th, and K) favorability indices, estimation of uranium migration rate percentage, variation of eU with eTh and eU/eTh ratio, and the construction of the contour map of the (eU-eTh/3.5) in the different rock units. The highest percent of uranium migration- out or leaching rate is connected with the red and pink granites of Gebel Kadabora El-hamra, metadiorite, and red and pink granites of G. Umm Rakham (??20.8%, ??18.57%, and ??8.45% respectively), which indicates that they could represent a major U-source bodies in the area. It was observed that the metasediments and associated graphite-bearing schists west and northwest of G. Kadabora El-hamra reflect more precipitation than the other locations around the pluton (the uranium migration rates varies between 2.59 and 30%) which mean that the graphite may have acted as a reducing agent for uranium carried in oxidizing fluids (surface meteoric water) and resulted in its precipitation. In the light of the availability of uranium source, its mobility, and graphite-bearing metasediments, the area has a good potential for the possible occurrence of uranium mineralization.  相似文献   
5.
Forecasting solar and geomagnetic levels of activity is essential to help plan missions and to design satellites that will survive for their useful lifetimes. Therefore, amplitudes of the upcoming solar cycles and the geomagnetic activity were forecasted using the neuro-fuzzy approach. Results of this work allow us to draw the following conclusions: Two moderate cycles are estimated to approach their maximum sunspot numbers, 110 and 116 in 2011 and 2021, respectively. However, the predicted geomagnetic activity shown to be in phase with the peak of the 24th sunspot cycle will reach its minimum three years earlier, then it will rise sharply to reach the 25th maximum a year earlier (i.e., 2020). Our analysis of the three-century long sunspot number data-set suggests that the quasi-periodic variation of the long-term evolution of solar activity could explain the irregularity of the short-term cycles seen during the past decades.  相似文献   
6.
7.
Dykes predominate within the Neoproterozoic rocks, especially granites, of Wadi El Redi-Wadi Lahami area in the southern Eastern Desert of Egypt. The dyke swarms form three major suites: from the oldest to the youngest, they are basaltic andesite—Suite 1 (E-W and ENE-WSW), rhyolite—Suite 2 (NE-SW), and andesite—Suite 3 (NNE-SSW, NNW-SSE, and NW-SE). Despite the wide ranges of the dyke compositions, the feldspar and amphibole are usually the essential forming minerals. The plagioclase arrays between Ab0.9An99.10 in the basaltic andesite and Ab98.80An0.70 in the rhyolite, while sanidine ranges from Or44.60Ab49.70 to Or98.40Ab1.60. Amphibole in Suite 1 and 3 (Al2O3, TiO2, Na2O, and K2O are the lowest and those of SiO2 and CaO are the highest) samples are usually magnesio-hornblende, whereas it is edenite and tschermakite in Suite 2 dykes. Despite all parent magmas have calc-alkaline affinity, some elements such as Ni show an erratic behavior against the progressing differentiation from one magma chamber and implying for an assimilation of the country rocks. The high contents of amphibole, the depletion in Ti, and the enrichment in large-ion lithophile elements (such as K, Rb, Ba, Sr, and Ba) compared to the primitive mantle composition are consistent with parent hydrous melts generated due to extension above the subduction zone. The estimated compositions of liquids in equilibrium with amphiboles and the pressures at which they crystallized (4.61–7.8 kbar for the Suite 2 and 1.5–2 kbar for the Suites 1 and 3) are greatly varied. These are indications for a difference in the source regions of the parent magmas of the studied dykes. It is supposed that the Suite 1 and 2 dykes are a conjugate set emplaced due to the NW-SE crustal extension in the Arabian-Nubian shield, whereas the Suite 3 dykes generated due to the rifting along the Red Sea.  相似文献   
8.
Serpentinites are widespread in the Arabian-Nubian Shield (ANS) of the Eastern Desert of Egypt and usually enclose a tremendous carbonate alteration. Combined investigation of the stable isotope compositions of both O-H in serpentines and O-C in the whole-rock and the chemistry of the fluid-mobile elements (FMEs) in whole-rock serpentinites from Wadi (W.) Alam, Gabal (G.) El-Maiyit, and W. Atalla (Eastern Desert of Egypt) allowed to better understand the subsequent fluid sources of serpentinization and carbonation, as well as impact of these processes on the geochemistry of protolith ultramafic rocks. δ 18O values of W. Alam and W. Atalla serpentine minerals are close to the unaltered mantle and propose a lower temperature serpentinization if compared with those of G. El-Maiyit rocks. Moreover, δD values of W. Alam and W. Atalla serpentines (? 94 to ? 65‰) correspond to an igneous source that might be hydrothermal solutions mixed with the seawater in the mid-ocean ridge-arc transition setting. On the other hand, G. El-Maiyit serpentine is more depleted in 18O (with lower δ 18O values = 4.08–4.85‰), and its δD values (? 73 to 56 ‰) are most probably caused by an interaction with metamorphic fluids, acquired during on-land emplacement of oceanic peridotites or during burial in fore-arc setting. In addition, the oceanic oxygen isotope composition of most studied ophiolitic serpentinites points to the preservation of the pre-obduction δ 18O signatures and thus local-scale fluid flow at low water/rock ratios. Serpentinization fluids were CO2-poor and the carbonation of the serpentinites resulted from infiltration of externally derived fluids. δ 18OVSMOW values of carbonates in the studied serpentinites vary between heavier oxygen isotope composition in G. El-Maiyit samples (av. = 25.32‰) to lighter composition in W. Alam samples (av. = 19.43‰). However, δ 13C values of all serpentinites point mantle source of carbon. This source might have been evolved in mid-ocean ridge (W. Atalla) and subduction zone (W. Alam and G. El-Maiyit) settings. The studied serpentinites are usually enriched in FMEs, particularly Pb, Sr, Cs, and U. These enrichments were most probably the result of serpentinization and/or carbonation.  相似文献   
9.
In order to assess pollutants and impact of environmental changes along the Egyptian Red Sea coast, seven recent and Pleistocene coral species have been analyzed for Zn, Pb, Mn, Fe, Cr, Co, Ni, and Cu. Results show that the concentration of trace elements in recent coral skeletons is higher than those of Pleistocene counterpart except for Mn and Ni. In comparison with recent worldwide reefs, the present values are less than those of Central America coast (iron), Gulf of Aqaba, Jordan (lead, copper), Gulf of Mannar, India (chromium, zinc, manganese), Costa Rica, Panama (chromium, nickel), North-west coast of Venezuela and Saudi Arabia (copper). The present values are higher than those of Gulf of Aqaba, Jordan (iron, zinc, manganese), Gulf of Mannar, India (lead, cobalt, nickel), North-west coast of Venezuela (lead, zinc, chromium, manganese), Australia (copper, nickel, zinc, manganese). The highest values were recorded in Stylophora pistillata (iron, lead and copper), Acropora cytherea (cobalt), Pocillopora verrucosa (zinc) and the lowest concentrations were recorded in Goniastrea pectinata (iron, chromium, copper and nickel), Favites pentagona (lead, zinc and manganese), and Porites lutea (cobalt). The differences in metals content among the studied species are attributed to differences in microstructure and microarchitecture.  相似文献   
10.
A well-controlled 3-D experiment with pre-defined block heterogeneities is conducted, where neutron tomography is used to map 3-D water distribution after two successive drainage steps. The material and hydraulic properties of the two sands are first measured in the laboratory with multistep outflow experiments. Additionally, the pore structure of the sands is acquired by means of image analysis of synchrotron tomography data and the structure is used for pore-scale simulation of one- and two-phase flow with Lattice-Boltzmann methods. This gives us another set of material and hydraulic parameters of the sands. The two sets of hydraulic properties (from the lab scale and from the pore scale) are then used in numerical simulations of the 3-D experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号