首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   2篇
大气科学   2篇
地球物理   17篇
地质学   19篇
海洋学   8篇
天文学   3篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   7篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有50条查询结果,搜索用时 218 毫秒
1.
The left-lateral Amanos Fault follows a 200-km-long and up to 2-km-high escarpment that bounds the eastern margin of the Amanos mountain range and the western margin of the Karasu Valley in southern Turkey, just east of the northeastern corner of the Mediterranean Sea. Regional kinematic models have reached diverse conclusions as to the role of this fault in accommodating relative motion between either the African and Arabian, Turkish and African, or Turkish and Arabian plates. Local studies have tried to estimate its slip rate by K–Ar dating Quaternary basalts that erupted within the Amanos Mountains, flowed across it into the Karasu Valley, and have since become offset. However, these studies have yielded a wide range of results, ranging from 0.3 to 15 mm a−1, which do not allow the overall role and significance of this fault in accommodating crustal deformation to be determined. We have used the Cassignol K–Ar method to date nine Quaternary basalt samples from the vicinity of the southern part of the Amanos Fault. These basalts exhibit a diverse chemistry, which we interpret as a consequence varying degrees of partial melting of their source combined with variable crustal contamination. This dating allows us to constrain the Quaternary slip rate on the Amanos fault to 1.0 to 1.6 mm a−1. The dramatic discrepancies between past estimates of this slip rate are partly due to technical difficulties in K–Ar dating of young basalts by isotope dilution. In addition, previous studies at the key locality of Hacılar have unwittingly dated different, chemically distinct, flow units of different ages that are juxtaposed. This low slip rate indicates that, at present, the Amanos Fault takes up a small proportion of the relative motion between the African and Arabian plates, which is transferred southward to the Dead Sea Fault Zone. It also provides strong evidence against the long-standing view that its slip continues offshore to the southwest along a hypothetical left-lateral fault zone located south of Cyprus.  相似文献   
2.
A geochronological study of the Filicudi, Salina, Lipari and Vulcano Islands (Aeolian Archipelago) using the unspiked potassium–argon technique provides new age data which, combined with stratigraphic correlation, better constrain the temporal evolution of volcanism. The unspiked K–Ar age of the oldest exposed lavas on Filicudi, 219±5 ka, is significantly younger than the previous estimation of 1.02 Ma. In the general context of Aeolian volcanism, this new date suggests that the volcanism of the western sector of the Aeolian Archipelago is younger than previously thought. Geochronological data point out on the rapid transition from calc–alkaline to potassic volcanism. The distribution of the K–Ar ages within the Salina–Lipari–Vulcano group shows that the volcanism started on Lipari and propagated over time northward on Salina and southward on Vulcano. Geochronological and geophysical data suggest that the onset of volcanism in the central sector of the Aeolian Arc may be due to a mantle upwelling structure located below Lipari. A change in the style of the eruptions occurred in the Salina–Lipari–Vulcano system at about 100 ka from the present. Low-energy magmatic eruptions occurred between 188 and about 100 ka. From about 100 ka to the present, higher-energy eruptions and low-energy events due to magma–water interaction also occurred. This change in the style of activity, together with the appearance of evolved products (i.e. rhyolites) during the last 50 ka, is consistent with the formation of magmatic reservoirs located at shallower depth with respect to those of the 188–100-ka period. The new geochronological data and available petrological models reveal that a change in the deep source of the primary magmas occurred in a relatively short time interval.  相似文献   
3.
4.
André  Gael  Bellafont  Florian  Leckler  Fabien  Morichon  Denis 《Natural Hazards》2021,106(1):1065-1086
Natural Hazards - Long-period waves propagating inside harbours can lead to the generation of seiche that can affect and significantly disrupt port operations. This study is based on the analysis...  相似文献   
5.
The Alleret maar (Massif Central, France) provides a long lacustrine sequence (40.6 m) attributed to the early Middle Pleistocene. Sediment, pollen and diatoms analysis of its upper part (AL2 core, 14.6 m) indicates two temperate phases marked by high lake levels, forest development and vegetation expansion. They are separated by a cold period during which lake level drops, coarse sediment input increases and steppic and xerophilous plants develop. Pollen data suggests that this sequence belongs to the upper part of the Cromerian complex. These results are in agreement with the 557 ± 3 ka (±12 ka, including all errors) 40Ar/39Ar age obtained from an interbedded tephra layer emitted by the Mont-Dore/Sancy strato-volcano and establish that this sequence probably covers the MIS 15 substages.  相似文献   
6.
7.
We have sampled a sequence of 107 lava flows in the Waianae series on Oahu, Hawaii, in two separate stretches. The first (51 flows) at Kaena Point extends from sea level to an altitude of 190 m, and the second (56 flows) follows the Satellite Tracking Station road from 218 m to 360 m above sea level. Thermal and af demagnetization yield very similar results, and reveal only normal polarities. K/Ar dating at five different horizons combined with the paleomagnetic results indicate that the sequence was emplaced entirely in the normal polarity interval between the Upper Mammoth and the Lower Kaena polarity transitions (3.22–3.11 Ma). Some of the flows are serially correlated. Filtering does not, however, drastically affect the final results. Inclinations are shallower than those expected from a centered dipole field. Although large (13°), the inclination anomaly is consistent with results from other sites at the same latitude. The scatter of the VGPs about the geographic pole is consistent with available data from other regions at similar latitudes. The scatter of the directions is also consistent with the predictions of recent statistical models of paleosecular variation. Therefore, these results do not support the hypothesis of a Pacific dipole window.  相似文献   
8.
In climatology and hydrology, univariate Extreme Value Theory has become a powerful tool to model the distribution of extreme events. The Generalized Pareto Distribution (GPD) is routinely applied to model excesses in space or time by letting the two GPD parameters depend on appropriate covariates. Two possible pitfalls of this strategy are the modeling and the interpretation of the scale and shape GPD parameters estimates which are often and incorrectly viewed as independent variables. In this note we first recall a statistical technique that makes the GPD estimates less correlated within a Maximum Likelihood (ML) estimation approach. In a second step we propose novel reparametrizations for two method-of-moments particularly popular in hydrology: the Probability Weighted Moment (PWM) method and its generalized version (GPWM). Finally these three inference methods (ML, PWM and GPWM) are compared and discussed with respect to the issue of correlations.  相似文献   
9.
10.
Occurrences of debris avalanche deposits newly identified in Tahiti (Society Islands) and Ua Huka (Marquesas Archipelago) are described and interpreted here. In both islands, the breccias are located within horseshoe-shaped residual calderas. In Tahiti, the epiclastic formations, up to 500 m thick, lie on the floor of the central depression and in the valley of the northwards running Papenoo River. In Ua Huka, the breccias crop out within a depression limited by a semicircular crest in four bays along the southern coast. Their thickness is ca. 100 m. A few clasts collected in the Tahitian breccias and some rocks forming their substratum have been dated (K–Ar datings) and analysed (major and trace elements, Sr–Nd isotopes) for this study. Using these data, we show that the debris avalanche(s) occurred in Tahiti Nui at the end of the growth of the shield volcano (between 570 000 and 390 000 years ago), maybe in consequence of the emplacement of the plutonic body which occupies the central part of the caldera. In Ua Huka, the collapse took place nearly 3 Ma ago, between the construction of the shield volcano and that of the inner one. The southwards orientation of the caldera, like that of the neighbouring island Nuku Hiva, might reflect a preferential direction of weakness in the substratum of the central Marquesas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号